A data engineer develops an AWS Glue Apache Spark ETL job to perform transformations on a dataset. When the data engineer runs the job, the job returns an error that reads, "No space left on device."
The data engineer needs to identify the source of the error and provide a solution.
Which combinations of steps will meet this requirement MOST cost-effectively? (Select TWO.)
A company has an Amazon Redshift data warehouse that users access by using a variety of IAM roles. More than 100 users access the data warehouse every day.
The company wants to control user access to the objects based on each user's job role, permissions, and how sensitive the data is.
Which solution will meet these requirements?
A data engineer needs to build an extract, transform, and load (ETL) job. The ETL job will process daily incoming .csv files that users upload to an Amazon S3 bucket. The size of each S3 object is less than 100 MB.
Which solution will meet these requirements MOST cost-effectively?
A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.
A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.
Which solution will meet this requirement?
A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.
The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.
A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.
Which solution will meet these requirements with the LEAST operational effort?
A company extracts approximately 1 TB of data every day from data sources such as SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. Some of the data sources have undefined data schemas or data schemas that change.
A data engineer must implement a solution that can detect the schema for these data sources. The solution must extract, transform, and load the data to an Amazon S3 bucket. The company has a service level agreement (SLA) to load the data into the S3 bucket within 15 minutes of data creation.
Which solution will meet these requirements with the LEAST operational overhead?
A data engineer needs to create an empty copy of an existing table in Amazon Athena to perform data processing tasks. The existing table in Athena contains 1,000 rows.
Which query will meet this requirement?
A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.
The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.
Which solutions will meet these requirements? (Choose two.)
A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.
A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.
Which solution will meet this requirement?
A company uses Amazon RDS for MySQL as the database for a critical application. The database workload is mostly writes, with a small number of reads.
A data engineer notices that the CPU utilization of the DB instance is very high. The high CPU utilization is slowing down the application. The data engineer must reduce the CPU utilization of the DB Instance.
Which actions should the data engineer take to meet this requirement? (Choose two.)
A company uses an organization in AWS Organizations to manage multiple AWS accounts. The company uses an enhanced fanout data stream in Amazon Kinesis Data Streams to receive streaming data from multiple producers. The data stream runs in Account A. The company wants to use an AWS Lambda function in Account B to process the data from the stream. The company creates a Lambda execution role in Account B that has permissions to access data from the stream in Account A.
What additional step must the company take to meet this requirement?
The company stores a large volume of customer records in Amazon S3. To comply with regulations, the company must be able to access new customer records immediately for the first 30 days after the records are created. The company accesses records that are older than 30 days infrequently.
The company needs to cost-optimize its Amazon S3 storage.
Which solution will meet these requirements MOST cost-effectively?
A media company uses software as a service (SaaS) applications to gather data by using third-party tools. The company needs to store the data in an Amazon S3 bucket. The company will use Amazon Redshift to perform analytics based on the data.
Which AWS service or feature will meet these requirements with the LEAST operational overhead?
A company uses Amazon RDS to store transactional data. The company runs an RDS DB instance in a private subnet. A developer wrote an AWS Lambda function with default settings to insert, update, or delete data in the DB instance.
The developer needs to give the Lambda function the ability to connect to the DB instance privately without using the public internet.
Which combination of steps will meet this requirement with the LEAST operational overhead? (Choose two.)
A retail company stores data from a product lifecycle management (PLM) application in an on-premises MySQL database. The PLM application frequently updates the database when transactions occur.
The company wants to gather insights from the PLM application in near real time. The company wants to integrate the insights with other business datasets and to analyze the combined dataset by using an Amazon Redshift data warehouse.
The company has already established an AWS Direct Connect connection between the on-premises infrastructure and AWS.
Which solution will meet these requirements with the LEAST development effort?
A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.
A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.
Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)
A company has multiple applications that use datasets that are stored in an Amazon S3 bucket. The company has an ecommerce application that generates a dataset that contains personally identifiable information (PII). The company has an internal analytics application that does not require access to the PII.
To comply with regulations, the company must not share PII unnecessarily. A data engineer needs to implement a solution that with redact PII dynamically, based on the needs of each application that accesses the dataset.
Which solution will meet the requirements with the LEAST operational overhead?
A company currently stores all of its data in Amazon S3 by using the S3 Standard storage class.
A data engineer examined data access patterns to identify trends. During the first 6 months, most data files are accessed several times each day. Between 6 months and 2 years, most data files are accessed once or twice each month. After 2 years, data files are accessed only once or twice each year.
The data engineer needs to use an S3 Lifecycle policy to develop new data storage rules. The new storage solution must continue to provide high availability.
Which solution will meet these requirements in the MOST cost-effective way?
A company stores its processed data in an S3 bucket. The company has a strict data access policy. The company uses IAM roles to grant teams within the company different levels of access to the S3 bucket.
The company wants to receive notifications when a user violates the data access policy. Each notification must include the username of the user who violated the policy.
Which solution will meet these requirements?
A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.
An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.
If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.
Which solution will meet these requirements?
A company is using Amazon S3 to build a data lake. The company needs to replicate records from multiple source databases into Apache Parquet format.
Most of the source databases are hosted on Amazon RDS. However, one source database is an on-premises Microsoft SQL Server Enterprise instance. The company needs to implement a solution to replicate existing data from all source databases and all future changes to the target S3 data lake.
Which solution will meet these requirements MOST cost-effectively?
A data engineer is using an Apache Iceberg framework to build a data lake that contains 100 TB of data. The data engineer wants to run AWS Glue Apache Spark Jobs that use the Iceberg framework.
What combination of steps will meet these requirements? (Select TWO.)
A data engineer maintains a materialized view that is based on an Amazon Redshift database. The view has a column named load_date that stores the date when each row was loaded.
The data engineer needs to reclaim database storage space by deleting all the rows from the materialized view.
Which command will reclaim the MOST database storage space?

A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.
The data engineer's original query is as follows:
SELECT product_name, sum(sales_amount)
FROM sales_data
WHERE year = 2023
GROUP BY product_name
How should the data engineer modify the Athena query to meet these requirements?
A company has a data lake in Amazon S3. The company collects AWS CloudTrail logs for multiple applications. The company stores the logs in the data lake, catalogs the logs in AWS Glue, and partitions the logs based on the year. The company uses Amazon Athena to analyze the logs.
Recently, customers reported that a query on one of the Athena tables did not return any data. A data engineer must resolve the issue.
Which combination of troubleshooting steps should the data engineer take? (Select TWO.)
A data engineer is troubleshooting an AWS Glue workflow that occasionally fails. The engineer determines that the failures are a result of data quality issues. A business reporting team needs to receive an email notification any time the workflow fails in the future.
Which solution will meet this requirement?
A company wants to implement real-time analytics capabilities. The company wants to use Amazon Kinesis Data Streams and Amazon Redshift to ingest and process streaming data at the rate of several gigabytes per second. The company wants to derive near real-time insights by using existing business intelligence (BI) and analytics tools.
Which solution will meet these requirements with the LEAST operational overhead?
A healthcare company stores patient records in an on-premises MySQL database. The company creates an application to access the MySQL database. The company must enforce security protocols to protect the patient records. The company currently rotates database credentials every 30 days to minimize the risk of unauthorized access.
The company wants a solution that does not require the company to modify the application code for each credential rotation.
Which solution will meet this requirement with the least operational overhead?
A data engineer must orchestrate a data pipeline that consists of one AWS Lambda function and one AWS Glue job. The solution must integrate with AWS services.
Which solution will meet these requirements with the LEAST management overhead?
A company is using Amazon Redshift to build a data warehouse solution. The company is loading hundreds of tiles into a tact table that is in a Redshift cluster.
The company wants the data warehouse solution to achieve the greatest possible throughput. The solution must use cluster resources optimally when the company loads data into the tact table.
Which solution will meet these requirements?
A marketing company uses Amazon S3 to store marketing data. The company uses versioning in some buckets. The company runs several jobs to read and load data into the buckets.
To help cost-optimize its storage, the company wants to gather information about incomplete multipart uploads and outdated versions that are present in the S3 buckets.
Which solution will meet these requirements with the LEAST operational effort?
A company is developing machine learning (ML) models. A data engineer needs to apply data quality rules to training data. The company stores the training data in an Amazon S3 bucket.
A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.
Which solution will meet these requirements with the LEAST effort?
A retail company is using an Amazon Redshift cluster to support real-time inventory management. The company has deployed an ML model on a real-time endpoint in Amazon SageMaker.
The company wants to make real-time inventory recommendations. The company also wants to make predictions about future inventory needs.
Which solutions will meet these requirements? (Select TWO.)
A company needs to automate data workflows from multiple data sources to run both on schedules and in response to events from Amazon EventBridge. The data sources are Amazon RDS and Amazon S3. The company needs a single data pipeline that can be invoked both by scheduled events and near real-time EventBridge events.
Which solution will meet these requirements with the LEAST operational overhead?
A company uses Amazon S3 to store semi-structured data in a transactional data lake. Some of the data files are small, but other data files are tens of terabytes.
A data engineer must perform a change data capture (CDC) operation to identify changed data from the data source. The data source sends a full snapshot as a JSON file every day and ingests the changed data into the data lake.
Which solution will capture the changed data MOST cost-effectively?
A company wants to use Apache Spark jobs that run on an Amazon EMR cluster to process streaming data. The Spark jobs will transform and store the data in an Amazon S3 bucket. The company will use Amazon Athena to perform analysis.
The company needs to optimize the data format for analytical queries.
Which solutions will meet these requirements with the SHORTEST query times? (Select TWO.)
A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.
Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.
Which solution will meet this requirement with the LEAST latency?
A company stores data in a data lake that is in Amazon S3. Some data that the company stores in the data lake contains personally identifiable information (PII). Multiple user groups need to access the raw data. The company must ensure that user groups can access only the PII that they require.
Which solution will meet these requirements with the LEAST effort?
A retail company uses Amazon Aurora PostgreSQL to process and store live transactional data. The company uses an Amazon Redshift cluster for a data warehouse.
An extract, transform, and load (ETL) job runs every morning to update the Redshift cluster with new data from the PostgreSQL database. The company has grown rapidly and needs to cost optimize the Redshift cluster.
A data engineer needs to create a solution to archive historical data. The data engineer must be able to run analytics queries that effectively combine data from live transactional data in PostgreSQL, current data in Redshift, and archived historical data. The solution must keep only the most recent 15 months of data in Amazon Redshift to reduce costs.
Which combination of steps will meet these requirements? (Select TWO.)
A company created an extract, transform, and load (ETL) data pipeline in AWS Glue. A data engineer must crawl a table that is in Microsoft SQL Server. The data engineer needs to extract, transform, and load the output of the crawl to an Amazon S3 bucket. The data engineer also must orchestrate the data pipeline.
Which AWS service or feature will meet these requirements MOST cost-effectively?
A company stores logs in an Amazon S3 bucket. When a data engineer attempts to access several log files, the data engineer discovers that some files have been unintentionally deleted.
The data engineer needs a solution that will prevent unintentional file deletion in the future.
Which solution will meet this requirement with the LEAST operational overhead?
A company is planning to use a provisioned Amazon EMR cluster that runs Apache Spark jobs to perform big data analysis. The company requires high reliability. A big data team must follow best practices for running cost-optimized and long-running workloads on Amazon EMR. The team must find a solution that will maintain the company's current level of performance.
Which combination of resources will meet these requirements MOST cost-effectively? (Choose two.)
A data engineer is configuring an AWS Glue job to read data from an Amazon S3 bucket. The data engineer has set up the necessary AWS Glue connection details and an associated IAM role. However, when the data engineer attempts to run the AWS Glue job, the data engineer receives an error message that indicates that there are problems with the Amazon S3 VPC gateway endpoint.
The data engineer must resolve the error and connect the AWS Glue job to the S3 bucket.
Which solution will meet this requirement?
A data engineer is using an AWS Glue ETL job to remove outdated customer records from a table that contains customer account information. The data engineer is using the following SQL command:
MERGE INTO accounts t USING monthly_accounts_update s
ON t.customer = s.customer
WHEN MATCHED THEN DELETE
What will happen when the data engineer runs the SQL command?
A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.
The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.
Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)
A company uses AWS Glue Apache Spark jobs to handle extract, transform, and load (ETL) workloads. The company has enabled logging and monitoring for all AWS Glue jobs. One of the AWS Glue jobs begins to fail. A data engineer investigates the error and wants to examine metrics for all individual stages within the job. How can the data engineer access the stage metrics?
A company stores time-series data that is collected from streaming services in an Amazon S3 bucket. The company must ensure that only workloads that are deployed within the company's VPC can access the data.
Which solution will meet this requirement?
A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.
The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.
Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)
A company uses AWS Glue Data Catalog to index data that is uploaded to an Amazon S3 bucket every day. The company uses a daily batch processes in an extract, transform, and load (ETL) pipeline to upload data from external sources into the S3 bucket.
The company runs a daily report on the S3 data. Some days, the company runs the report before all the daily data has been uploaded to the S3 bucket. A data engineer must be able to send a message that identifies any incomplete data to an existing Amazon Simple Notification Service (Amazon SNS) topic.
Which solution will meet this requirement with the LEAST operational overhead?
A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.
The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.
Which solution will meet these requirements with the LEAST implementation effort?
A company stores sensitive data in an Amazon Redshift table. The company needs to give specific users the ability to access the sensitive data. The company must not create duplication in the data.
Customer support users must be able to see the last four characters of the sensitive data. Audit users must be able to see the full value of the sensitive data. No other users can have the ability to access the sensitive information.
Which solution will meet these requirements?
A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.
Which combination of AWS services will implement a data mesh? (Choose two.)
A company receives a data file from a partner each day in an Amazon S3 bucket. The company uses a daily AW5 Glue extract, transform, and load (ETL) pipeline to clean and transform each data file. The output of the ETL pipeline is written to a CSV file named Dairy.csv in a second 53 bucket.
Occasionally, the daily data file is empty or is missing values for required fields. When the file is missing data, the company can use the previous day's CSV file.
A data engineer needs to ensure that the previous day's data file is overwritten only if the new daily file is complete and valid.
Which solution will meet these requirements with the LEAST effort?
A data engineer uses Amazon Kinesis Data Streams to ingest and process records that contain user behavior data from an application every day.
The data engineer notices that the data stream is experiencing throttling because hot shards receive much more data than other shards in the data stream.
How should the data engineer resolve the throttling issue?
A data engineer needs to debug an AWS Glue job that reads from Amazon S3 and writes to Amazon Redshift. The data engineer enabled the bookmark feature for the AWS Glue job. The data engineer has set the maximum concurrency for the AWS Glue job to 1.
The AWS Glue job is successfully writing the output to Amazon Redshift. However, the Amazon S3 files that were loaded during previous runs of the AWS Glue job are being reprocessed by subsequent runs.
What is the likely reason the AWS Glue job is reprocessing the files?
A car sales company maintains data about cars that are listed for sale in an area. The company receives data about new car listings from vendors who upload the data daily as compressed files into Amazon S3. The compressed files are up to 5 KB in size. The company wants to see the most up-to-date listings as soon as the data is uploaded to Amazon S3.
A data engineer must automate and orchestrate the data processing workflow of the listings to feed a dashboard. The data engineer must also provide the ability to perform one-time queries and analytical reporting. The query solution must be scalable.
Which solution will meet these requirements MOST cost-effectively?
A company has used an Amazon Redshift table that is named Orders for 6 months. The company performs weekly updates and deletes on the table. The table has an interleaved sort key on a column that contains AWS Regions.
The company wants to reclaim disk space so that the company will not run out of storage space. The company also wants to analyze the sort key column.
Which Amazon Redshift command will meet these requirements?
A company's data engineer needs to optimize the performance of table SQL queries. The company stores data in an Amazon Redshift cluster. The data engineer cannot increase the size of the cluster because of budget constraints.
The company stores the data in multiple tables and loads the data by using the EVEN distribution style. Some tables are hundreds of gigabytes in size. Other tables are less than 10 MB in size.
Which solution will meet these requirements?
A data engineer has two datasets that contain sales information for multiple cities and states. One dataset is named reference, and the other dataset is named primary.
The data engineer needs a solution to determine whether a specific set of values in the city and state columns of the primary dataset exactly match the same specific values in the reference dataset. The data engineer wants to use Data Quality Definition Language (DQDL) rules in an AWS Glue Data Quality job.
Which rule will meet these requirements?
A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.
Which solution will meet these requirements?
A company has as JSON file that contains personally identifiable information (PIT) data and non-PII data. The company needs to make the data available for querying and analysis. The non-PII data must be available to everyone in the company. The PII data must be available only to a limited group of employees. Which solution will meet these requirements with the LEAST operational overhead?