Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: cramtreat

Data-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01) Questions and Answers

Questions 4

A data engineer develops an AWS Glue Apache Spark ETL job to perform transformations on a dataset. When the data engineer runs the job, the job returns an error that reads, "No space left on device."

The data engineer needs to identify the source of the error and provide a solution.

Which combinations of steps will meet this requirement MOST cost-effectively? (Select TWO.)

Options:

A.

Scale out the workers vertically to address data skewness.

B.

Use the Spark UI and AWS Glue metrics to monitor data skew in the Spark executors.

C.

Scale out the number of workers horizontally to address data skewness.

D.

Enable the --write-shuffle-files-to-s3 job parameter. Use the salting technique.

E.

Use error logs in Amazon CloudWatch to monitor data skew.

Buy Now
Questions 5

A company has an Amazon Redshift data warehouse that users access by using a variety of IAM roles. More than 100 users access the data warehouse every day.

The company wants to control user access to the objects based on each user's job role, permissions, and how sensitive the data is.

Which solution will meet these requirements?

Options:

A.

Use the role-based access control (RBAC) feature of Amazon Redshift.

B.

Use the row-level security (RLS) feature of Amazon Redshift.

C.

Use the column-level security (CLS) feature of Amazon Redshift.

D.

Use dynamic data masking policies in Amazon Redshift.

Buy Now
Questions 6

A data engineer needs to build an extract, transform, and load (ETL) job. The ETL job will process daily incoming .csv files that users upload to an Amazon S3 bucket. The size of each S3 object is less than 100 MB.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Write a custom Python application. Host the application on an Amazon Elastic Kubernetes Service (Amazon EKS) cluster.

B.

Write a PySpark ETL script. Host the script on an Amazon EMR cluster.

C.

Write an AWS Glue PySpark job. Use Apache Spark to transform the data.

D.

Write an AWS Glue Python shell job. Use pandas to transform the data.

Buy Now
Questions 7

A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.

A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.

Which solution will meet this requirement?

Options:

A.

Design the application so it can remove duplicates during processing by embedding a unique ID in each record at the source.

B.

Update the checkpoint configuration of the Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) data collection application to avoid duplicate processing of events.

C.

Design the data source so events are not ingested into Kinesis Data Streams multiple times.

D.

Stop using Kinesis Data Streams. Use Amazon EMR instead. Use Apache Flink and Apache Spark Streaming in Amazon EMR.

Buy Now
Questions 8

A company has three subsidiaries. Each subsidiary uses a different data warehousing solution. The first subsidiary hosts its data warehouse in Amazon Redshift. The second subsidiary uses Teradata Vantage on AWS. The third subsidiary uses Google BigQuery.

The company wants to aggregate all the data into a central Amazon S3 data lake. The company wants to use Apache Iceberg as the table format.

A data engineer needs to build a new pipeline to connect to all the data sources, run transformations by using each source engine, join the data, and write the data to Iceberg.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use native Amazon Redshift, Teradata, and BigQuery connectors to build the pipeline in AWS Glue. Use native AWS Glue transforms to join the data. Run a Merge operation on the data lake Iceberg table.

B.

Use the Amazon Athena federated query connectors for Amazon Redshift, Teradata, and BigQuery to build the pipeline in Athena. Write a SQL query to read from all the data sources, join the data, and run a Merge operation on the data lake Iceberg table.

C.

Use the native Amazon Redshift connector, the Java Database Connectivity (JDBC) connector for Teradata, and the open source Apache Spark BigQuery connector to build the pipeline in Amazon EMR. Write code in PySpark to join the data. Run a Merge operation on the data lake Iceberg table.

D.

Use the native Amazon Redshift, Teradata, and BigQuery connectors in Amazon Appflow to write data to Amazon S3 and AWS Glue Data Catalog. Use Amazon Athena to join the data. Run a Merge operation on the data lake Iceberg table.

Buy Now
Questions 9

A company extracts approximately 1 TB of data every day from data sources such as SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. Some of the data sources have undefined data schemas or data schemas that change.

A data engineer must implement a solution that can detect the schema for these data sources. The solution must extract, transform, and load the data to an Amazon S3 bucket. The company has a service level agreement (SLA) to load the data into the S3 bucket within 15 minutes of data creation.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon EMR to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

B.

Use AWS Glue to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

C.

Create a PvSpark proqram in AWS Lambda to extract, transform, and load the data into the S3 bucket.

D.

Create a stored procedure in Amazon Redshift to detect the schema and to extract, transform, and load the data into a Redshift Spectrum table. Access the table from Amazon S3.

Buy Now
Questions 10

A data engineer needs to create an empty copy of an existing table in Amazon Athena to perform data processing tasks. The existing table in Athena contains 1,000 rows.

Which query will meet this requirement?

Options:

A.

CREATE TABLE new_table LIKE old_table;

B.

CREATE TABLE new_table AS SELECT * FROM old_table WITH NO DATA;

C.

CREATE TABLE new_table AS SELECT * FROM old_table;

D.

CREATE TABLE new_table AS SELECT * FROM old_table WHERE 1=1;

Buy Now
Questions 11

A data engineer runs Amazon Athena queries on data that is in an Amazon S3 bucket. The Athena queries use AWS Glue Data Catalog as a metadata table.

The data engineer notices that the Athena query plans are experiencing a performance bottleneck. The data engineer determines that the cause of the performance bottleneck is the large number of partitions that are in the S3 bucket. The data engineer must resolve the performance bottleneck and reduce Athena query planning time.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Create an AWS Glue partition index. Enable partition filtering.

B.

Bucket the data based on a column that the data have in common in a WHERE clause of the user query

C.

Use Athena partition projection based on the S3 bucket prefix.

D.

Transform the data that is in the S3 bucket to Apache Parquet format.

E.

Use the Amazon EMR S3DistCP utility to combine smaller objects in the S3 bucket into larger objects.

Buy Now
Questions 12

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

Options:

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

Buy Now
Questions 13

A company uses Amazon RDS for MySQL as the database for a critical application. The database workload is mostly writes, with a small number of reads.

A data engineer notices that the CPU utilization of the DB instance is very high. The high CPU utilization is slowing down the application. The data engineer must reduce the CPU utilization of the DB Instance.

Which actions should the data engineer take to meet this requirement? (Choose two.)

Options:

A.

Use the Performance Insights feature of Amazon RDS to identify queries that have high CPU utilization. Optimize the problematic queries.

B.

Modify the database schema to include additional tables and indexes.

C.

Reboot the RDS DB instance once each week.

D.

Upgrade to a larger instance size.

E.

Implement caching to reduce the database query load.

Buy Now
Questions 14

A company uses an organization in AWS Organizations to manage multiple AWS accounts. The company uses an enhanced fanout data stream in Amazon Kinesis Data Streams to receive streaming data from multiple producers. The data stream runs in Account A. The company wants to use an AWS Lambda function in Account B to process the data from the stream. The company creates a Lambda execution role in Account B that has permissions to access data from the stream in Account A.

What additional step must the company take to meet this requirement?

Options:

A.

Create a service control policy (SCP) to grant the data stream read access to the cross-account Lambda execution role. Attach the SCP to Account A.

B.

Add a resource-based policy to the data stream to allow read access for the cross-account Lambda execution role.

C.

Create a service control policy (SCP) to grant the data stream read access to the cross-account Lambda execution role. Attach the SCP to Account B.

D.

Add a resource-based policy to the cross-account Lambda function to grant the data stream read access to the function.

Buy Now
Questions 15

The company stores a large volume of customer records in Amazon S3. To comply with regulations, the company must be able to access new customer records immediately for the first 30 days after the records are created. The company accesses records that are older than 30 days infrequently.

The company needs to cost-optimize its Amazon S3 storage.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Apply a lifecycle policy to transition records to S3 Standard Infrequent-Access (S3 Standard-IA) storage after 30 days.

B.

Use S3 Intelligent-Tiering storage.

C.

Transition records to S3 Glacier Deep Archive storage after 30 days.

D.

Use S3 Standard-Infrequent Access (S3 Standard-IA) storage for all customer records.

Buy Now
Questions 16

A media company uses software as a service (SaaS) applications to gather data by using third-party tools. The company needs to store the data in an Amazon S3 bucket. The company will use Amazon Redshift to perform analytics based on the data.

Which AWS service or feature will meet these requirements with the LEAST operational overhead?

Options:

A.

Amazon Managed Streaming for Apache Kafka (Amazon MSK)

B.

Amazon AppFlow

C.

AWS Glue Data Catalog

D.

Amazon Kinesis

Buy Now
Questions 17

A company uses Amazon RDS to store transactional data. The company runs an RDS DB instance in a private subnet. A developer wrote an AWS Lambda function with default settings to insert, update, or delete data in the DB instance.

The developer needs to give the Lambda function the ability to connect to the DB instance privately without using the public internet.

Which combination of steps will meet this requirement with the LEAST operational overhead? (Choose two.)

Options:

A.

Turn on the public access setting for the DB instance.

B.

Update the security group of the DB instance to allow only Lambda function invocations on the database port.

C.

Configure the Lambda function to run in the same subnet that the DB instance uses.

D.

Attach the same security group to the Lambda function and the DB instance. Include a self-referencing rule that allows access through the database port.

E.

Update the network ACL of the private subnet to include a self-referencing rule that allows access through the database port.

Buy Now
Questions 18

A retail company stores data from a product lifecycle management (PLM) application in an on-premises MySQL database. The PLM application frequently updates the database when transactions occur.

The company wants to gather insights from the PLM application in near real time. The company wants to integrate the insights with other business datasets and to analyze the combined dataset by using an Amazon Redshift data warehouse.

The company has already established an AWS Direct Connect connection between the on-premises infrastructure and AWS.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Run a scheduled AWS Glue extract, transform, and load (ETL) job to get the MySQL database updates by using a Java Database Connectivity (JDBC) connection. Set Amazon Redshift as the destination for the ETL job.

B.

Run a full load plus CDC task in AWS Database Migration Service (AWS DMS) to continuously replicate the MySQL database changes. Set Amazon Redshift as the destination for the task.

C.

Use the Amazon AppFlow SDK to build a custom connector for the MySQL database to continuously replicate the database changes. Set Amazon Redshift as the destination for the connector.

D.

Run scheduled AWS DataSync tasks to synchronize data from the MySQL database. Set Amazon Redshift as the destination for the tasks.

Buy Now
Questions 19

A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.

A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.

Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)

Options:

A.

Partition the data that is in the S3 bucket. Organize the data by year, month, and day.

B.

Increase the AWS Glue instance size by scaling up the worker type.

C.

Convert the AWS Glue schema to the DynamicFrame schema class.

D.

Adjust AWS Glue job scheduling frequency so the jobs run half as many times each day.

E.

Modify the 1AM role that grants access to AWS glue to grant access to all S3 features.

Buy Now
Questions 20

A company has multiple applications that use datasets that are stored in an Amazon S3 bucket. The company has an ecommerce application that generates a dataset that contains personally identifiable information (PII). The company has an internal analytics application that does not require access to the PII.

To comply with regulations, the company must not share PII unnecessarily. A data engineer needs to implement a solution that with redact PII dynamically, based on the needs of each application that accesses the dataset.

Which solution will meet the requirements with the LEAST operational overhead?

Options:

A.

Create an S3 bucket policy to limit the access each application has. Create multiple copies of the dataset. Give each dataset copy the appropriate level of redaction for the needs of the application that accesses the copy.

B.

Create an S3 Object Lambda endpoint. Use the S3 Object Lambda endpoint to read data from the S3 bucket. Implement redaction logic within an S3 Object Lambda function to dynamically redact PII based on the needs of each application that accesses the data.

C.

Use AWS Glue to transform the data for each application. Create multiple copies of the dataset. Give each dataset copy the appropriate level of redaction for the needs of the application that accesses the copy.

D.

Create an API Gateway endpoint that has custom authorizers. Use the API Gateway endpoint to read data from the S3 bucket. Initiate a REST API call to dynamically redact PII based on the needs of each application that accesses the data.

Buy Now
Questions 21

A company currently stores all of its data in Amazon S3 by using the S3 Standard storage class.

A data engineer examined data access patterns to identify trends. During the first 6 months, most data files are accessed several times each day. Between 6 months and 2 years, most data files are accessed once or twice each month. After 2 years, data files are accessed only once or twice each year.

The data engineer needs to use an S3 Lifecycle policy to develop new data storage rules. The new storage solution must continue to provide high availability.

Which solution will meet these requirements in the MOST cost-effective way?

Options:

A.

Transition objects to S3 One Zone-Infrequent Access (S3 One Zone-IA) after 6 months. Transfer objects to S3 Glacier Flexible Retrieval after 2 years.

B.

Transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 6 months. Transfer objects to S3 Glacier Flexible Retrieval after 2 years.

C.

Transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 6 months. Transfer objects to S3 Glacier Deep Archive after 2 years.

D.

Transition objects to S3 One Zone-Infrequent Access (S3 One Zone-IA) after 6 months. Transfer objects to S3 Glacier Deep Archive after 2 years.

Buy Now
Questions 22

A company stores its processed data in an S3 bucket. The company has a strict data access policy. The company uses IAM roles to grant teams within the company different levels of access to the S3 bucket.

The company wants to receive notifications when a user violates the data access policy. Each notification must include the username of the user who violated the policy.

Which solution will meet these requirements?

Options:

A.

Use AWS Config rules to detect violations of the data access policy. Set up compliance alarms.

B.

Use Amazon CloudWatch metrics to gather object-level metrics. Set up CloudWatch alarms.

C.

Use AWS CloudTrail to track object-level events for the S3 bucket. Forward events to Amazon CloudWatch to set up CloudWatch alarms.

D.

Use Amazon S3 server access logs to monitor access to the bucket. Forward the access logs to an Amazon CloudWatch log group. Use metric filters on the log group to set up CloudWatch alarms.

Buy Now
Questions 23

A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.

An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.

If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.

Which solution will meet these requirements?

Options:

A.

Modify the AWS Glue job to copy the rows into a staging Redshift table. Add SQL commands to update the existing rows with new values from the staging Redshift table.

B.

Modify the AWS Glue job to load the previously inserted data into a MySQL database. Perform an upsert operation in the MySQL database. Copy the results to the Amazon Redshift tables.

C.

Use Apache Spark's DataFrame dropDuplicates() API to eliminate duplicates. Write the data to the Redshift tables.

D.

Use the AWS Glue ResolveChoice built-in transform to select the value of the column from the most recent record.

Buy Now
Questions 24

A company is using Amazon S3 to build a data lake. The company needs to replicate records from multiple source databases into Apache Parquet format.

Most of the source databases are hosted on Amazon RDS. However, one source database is an on-premises Microsoft SQL Server Enterprise instance. The company needs to implement a solution to replicate existing data from all source databases and all future changes to the target S3 data lake.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use one AWS Glue job to replicate existing data. Use a second AWS Glue job to replicate future changes.

B.

Use AWS Database Migration Service (AWS DMS) to replicate existing data. Use AWS Glue jobs to replicate future changes.

C.

Use AWS Database Migration Service (AWS DMS) to replicate existing data and future changes.

D.

Use AWS Glue jobs to replicate existing data. Use Amazon Kinesis Data Streams to replicate future changes.

Buy Now
Questions 25

A data engineer is using an Apache Iceberg framework to build a data lake that contains 100 TB of data. The data engineer wants to run AWS Glue Apache Spark Jobs that use the Iceberg framework.

What combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Create a key named -conf for an AWS Glue job. Set Iceberg as a value for the --datalake-formats job parameter.

B.

Specify the path to a specific version of Iceberg by using the --extra-Jars job parameter. Set Iceberg as a value for the ~ datalake-formats job parameter.

C.

Set Iceberg as a value for the -datalake-formats job parameter.

D.

Set the -enable-auto-scaling parameter to true.

E.

Add the -job-bookmark-option: job-bookmark-enable parameter to an AWS Glue job.

Buy Now
Questions 26

A data engineer maintains a materialized view that is based on an Amazon Redshift database. The view has a column named load_date that stores the date when each row was loaded.

The data engineer needs to reclaim database storage space by deleting all the rows from the materialized view.

Which command will reclaim the MOST database storage space?

Options:

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Buy Now
Questions 27

A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.

The data engineer's original query is as follows:

SELECT product_name, sum(sales_amount)

FROM sales_data

WHERE year = 2023

GROUP BY product_name

How should the data engineer modify the Athena query to meet these requirements?

Options:

A.

Replace sum(sales amount) with count(*J for the aggregation.

B.

Change WHERE year = 2023 to WHERE extractlyear FROM sales data) = 2023.

C.

Add HAVING sumfsales amount) > 0 after the GROUP BY clause.

D.

Remove the GROUP BY clause

Buy Now
Questions 28

A company has a data lake in Amazon S3. The company collects AWS CloudTrail logs for multiple applications. The company stores the logs in the data lake, catalogs the logs in AWS Glue, and partitions the logs based on the year. The company uses Amazon Athena to analyze the logs.

Recently, customers reported that a query on one of the Athena tables did not return any data. A data engineer must resolve the issue.

Which combination of troubleshooting steps should the data engineer take? (Select TWO.)

Options:

A.

Confirm that Athena is pointing to the correct Amazon S3 location.

B.

Increase the query timeout duration.

C.

Use the MSCK REPAIR TABLE command.

D.

Restart Athena.

E.

Delete and recreate the problematic Athena table.

Buy Now
Questions 29

A data engineer is troubleshooting an AWS Glue workflow that occasionally fails. The engineer determines that the failures are a result of data quality issues. A business reporting team needs to receive an email notification any time the workflow fails in the future.

Which solution will meet this requirement?

Options:

A.

Create an Amazon Simple Notification Service (Amazon SNS) FIFO topic. Subscribe the team's email account to the SNS topic. Create an AWS Lambda function that initiates when the AWS Glue job state changes to FAILED. Set the SNS topic as the target.

B.

Create an Amazon Simple Notification Service (Amazon SNS) standard topic. Subscribe the team's email account to the SNS topic. Create an Amazon EventBridge rule that triggers when the AWS Glue Job state changes to FAILED. Set the SNS topic as the target.

C.

Create an Amazon Simple Queue Service (Amazon SQS) FIFO queue. Subscribe the team's email account to the SQS queue. Create an AWS Config rule that triggers when the AWS Glue job state changes to FAILED. Set the SQS queue as the target.

D.

Create an Amazon Simple Queue Service (Amazon SQS) standard queue. Subscribe the team's email account to the SQS queue. Create an Amazon EventBridge rule that triggers when the AWS Glue job state changes to FAILED. Set the SQS queue as the target.

Buy Now
Questions 30

A company wants to implement real-time analytics capabilities. The company wants to use Amazon Kinesis Data Streams and Amazon Redshift to ingest and process streaming data at the rate of several gigabytes per second. The company wants to derive near real-time insights by using existing business intelligence (BI) and analytics tools.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Kinesis Data Streams to stage data in Amazon S3. Use the COPY command to load data from Amazon S3 directly into Amazon Redshift to make the data immediately available for real-time analysis.

B.

Access the data from Kinesis Data Streams by using SQL queries. Create materialized views directly on top of the stream. Refresh the materialized views regularly to query the most recent stream data.

C.

Create an external schema in Amazon Redshift to map the data from Kinesis Data Streams to an Amazon Redshift object. Create a materialized view to read data from the stream. Set the materialized view to auto refresh.

D.

Connect Kinesis Data Streams to Amazon Kinesis Data Firehose. Use Kinesis Data Firehose to stage the data in Amazon S3. Use the COPY command to load the data from Amazon S3 to a table in Amazon Redshift.

Buy Now
Questions 31

A healthcare company stores patient records in an on-premises MySQL database. The company creates an application to access the MySQL database. The company must enforce security protocols to protect the patient records. The company currently rotates database credentials every 30 days to minimize the risk of unauthorized access.

The company wants a solution that does not require the company to modify the application code for each credential rotation.

Which solution will meet this requirement with the least operational overhead?

Options:

A.

Assign an IAM role access permissions to the database. Configure the application to obtain temporary credentials through the IAM role.

B.

Use AWS Key Management Service (AWS KMS) to generate encryption keys. Configure automatic key rotation. Store the encrypted credentials in an Amazon DynamoDB table.

C.

Use AWS Secrets Manager to automatically rotate credentials. Allow the application to retrieve the credentials by using API calls.

D.

Store credentials in an encrypted Amazon S3 bucket. Rotate the credentials every month by using an S3 Lifecycle policy. Use bucket policies to control access.

Buy Now
Questions 32

A data engineer must orchestrate a data pipeline that consists of one AWS Lambda function and one AWS Glue job. The solution must integrate with AWS services.

Which solution will meet these requirements with the LEAST management overhead?

Options:

A.

Use an AWS Step Functions workflow that includes a state machine. Configure the state machine to run the Lambda function and then the AWS Glue job.

B.

Use an Apache Airflow workflow that is deployed on an Amazon EC2 instance. Define a directed acyclic graph (DAG) in which the first task is to call the Lambda function and the second task is to call the AWS Glue job.

C.

Use an AWS Glue workflow to run the Lambda function and then the AWS Glue job.

D.

Use an Apache Airflow workflow that is deployed on Amazon Elastic Kubernetes Service (Amazon EKS). Define a directed acyclic graph (DAG) in which the first task is to call the Lambda function and the second task is to call the AWS Glue job.

Buy Now
Questions 33

A company is using Amazon Redshift to build a data warehouse solution. The company is loading hundreds of tiles into a tact table that is in a Redshift cluster.

The company wants the data warehouse solution to achieve the greatest possible throughput. The solution must use cluster resources optimally when the company loads data into the tact table.

Which solution will meet these requirements?

Options:

A.

Use multiple COPY commands to load the data into the Redshift cluster.

B.

Use S3DistCp to load multiple files into Hadoop Distributed File System (HDFS). Use an HDFS connector to ingest the data into the Redshift cluster.

C.

Use a number of INSERT statements equal to the number of Redshift cluster nodes. Load the data in parallel into each node.

D.

Use a single COPY command to load the data into the Redshift cluster.

Buy Now
Questions 34

A marketing company uses Amazon S3 to store marketing data. The company uses versioning in some buckets. The company runs several jobs to read and load data into the buckets.

To help cost-optimize its storage, the company wants to gather information about incomplete multipart uploads and outdated versions that are present in the S3 buckets.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use AWS CLI to gather the information.

B.

Use Amazon S3 Inventory configurations reports to gather the information.

C.

Use the Amazon S3 Storage Lens dashboard to gather the information.

D.

Use AWS usage reports for Amazon S3 to gather the information.

Buy Now
Questions 35

A company is developing machine learning (ML) models. A data engineer needs to apply data quality rules to training data. The company stores the training data in an Amazon S3 bucket.

Options:

A.

Create an AWS Lambda function to check data quality and to raise exceptions in the code.

B.

Create an AWS Glue DataBrew project for the data in the S3 bucket. Create a ruleset for the data quality rules. Create a profile job to run the data quality rules. Use Amazon EventBridge to run the profile job when data is added to the S3 bucket.

C.

Create an Amazon EMR provisioned cluster. Add a Python data quality package.

D.

Create AWS Lambda functions to evaluate data quality rules and orchestrate with AWS Step Functions.

Buy Now
Questions 36

A data engineer needs to build an enterprise data catalog based on the company's Amazon S3 buckets and Amazon RDS databases. The data catalog must include storage format metadata for the data in the catalog.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use an AWS Glue crawler to scan the S3 buckets and RDS databases and build a data catalog. Use data stewards to inspect the data and update the data catalog with the data format.

B.

Use an AWS Glue crawler to build a data catalog. Use AWS Glue crawler classifiers to recognize the format of data and store the format in the catalog.

C.

Use Amazon Macie to build a data catalog and to identify sensitive data elements. Collect the data format information from Macie.

D.

Use scripts to scan data elements and to assign data classifications based on the format of the data.

Buy Now
Questions 37

A retail company is using an Amazon Redshift cluster to support real-time inventory management. The company has deployed an ML model on a real-time endpoint in Amazon SageMaker.

The company wants to make real-time inventory recommendations. The company also wants to make predictions about future inventory needs.

Which solutions will meet these requirements? (Select TWO.)

Options:

A.

Use Amazon Redshift ML to generate inventory recommendations.

B.

Use SQL to invoke a remote SageMaker endpoint for prediction.

C.

Use Amazon Redshift ML to schedule regular data exports for offline model training.

D.

Use SageMaker Autopilot to create inventory management dashboards in Amazon Redshift.

E.

Use Amazon Redshift as a file storage system to archive old inventory management reports.

Buy Now
Questions 38

A company needs to automate data workflows from multiple data sources to run both on schedules and in response to events from Amazon EventBridge. The data sources are Amazon RDS and Amazon S3. The company needs a single data pipeline that can be invoked both by scheduled events and near real-time EventBridge events.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create an AWS Glue workflow. Use EventBridge to integrate the events and schedules.

B.

Create an Amazon Managed Workflow for Apache Airflow (Amazon MWAA) workflow that uses a directed acyclic graph (DAG). Use EventBridge to integrate the events and schedules.

C.

Create an AWS Step Functions state machine. Integrate the state machine with AWS Glue ETL jobs and EventBridge to orchestrate the pipeline based on events and schedules.

D.

Create Amazon EMR Serverless jobs that are invoked by AWS Lambda functions. Use EventBridge events and schedules to orchestrate the EMR jobs.

Buy Now
Questions 39

A company uses Amazon S3 to store semi-structured data in a transactional data lake. Some of the data files are small, but other data files are tens of terabytes.

A data engineer must perform a change data capture (CDC) operation to identify changed data from the data source. The data source sends a full snapshot as a JSON file every day and ingests the changed data into the data lake.

Which solution will capture the changed data MOST cost-effectively?

Options:

A.

Create an AWS Lambda function to identify the changes between the previous data and the current data. Configure the Lambda function to ingest the changes into the data lake.

B.

Ingest the data into Amazon RDS for MySQL. Use AWS Database Migration Service (AWS DMS) to write the changed data to the data lake.

C.

Use an open source data lake format to merge the data source with the S3 data lake to insert the new data and update the existing data.

D.

Ingest the data into an Amazon Aurora MySQL DB instance that runs Aurora Serverless. Use AWS Database Migration Service (AWS DMS) to write the changed data to the data lake.

Buy Now
Questions 40

A company wants to use Apache Spark jobs that run on an Amazon EMR cluster to process streaming data. The Spark jobs will transform and store the data in an Amazon S3 bucket. The company will use Amazon Athena to perform analysis.

The company needs to optimize the data format for analytical queries.

Which solutions will meet these requirements with the SHORTEST query times? (Select TWO.)

Options:

A.

Use Avro format. Use AWS Glue Data Catalog to track schema changes.

B.

Use ORC format. Use AWS Glue Data Catalog to track schema changes.

C.

Use Apache Parquet format. Use an external Amazon DynamoDB table to track schema changes.

D.

Use Apache Parquet format. Use AWS Glue Data Catalog to track schema changes.

E.

Use ORC format. Store schema definitions in separate files in Amazon S3.

Buy Now
Questions 41

A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.

Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.

Which solution will meet this requirement with the LEAST latency?

Options:

A.

Create an AWS Lambda function to query Aurora for drops in network usage. Use Amazon EventBridge to automatically invoke the Lambda function every minute.

B.

Modify the processing application to publish the data to an Amazon Kinesis data stream. Create an Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) application to detect drops in network usage.

C.

Replace the Aurora database with an Amazon DynamoDB table. Create an AWS Lambda function to query the DynamoDB table for drops in network usage every minute. Use DynamoDB Accelerator (DAX) between the processing application and DynamoDB table.

D.

Create an AWS Lambda function within the Database Activity Streams feature of Aurora to detect drops in network usage.

Buy Now
Questions 42

A company stores data in a data lake that is in Amazon S3. Some data that the company stores in the data lake contains personally identifiable information (PII). Multiple user groups need to access the raw data. The company must ensure that user groups can access only the PII that they require.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Use Amazon Athena to query the data. Set up AWS Lake Formation and create data filters to establish levels of access for the company's IAM roles. Assign each user to the IAM role that matches the user's PII access requirements.

B.

Use Amazon QuickSight to access the data. Use column-level security features in QuickSight to limit the PII that users can retrieve from Amazon S3 by using Amazon Athena. Define QuickSight access levels based on the PII access requirements of the users.

C.

Build a custom query builder UI that will run Athena queries in the background to access the data. Create user groups in Amazon Cognito. Assign access levels to the user groups based on the PII access requirements of the users.

D.

Create IAM roles that have different levels of granular access. Assign the IAM roles to IAM user groups. Use an identity-based policy to assign access levels to user groups at the column level.

Buy Now
Questions 43

A retail company uses Amazon Aurora PostgreSQL to process and store live transactional data. The company uses an Amazon Redshift cluster for a data warehouse.

An extract, transform, and load (ETL) job runs every morning to update the Redshift cluster with new data from the PostgreSQL database. The company has grown rapidly and needs to cost optimize the Redshift cluster.

A data engineer needs to create a solution to archive historical data. The data engineer must be able to run analytics queries that effectively combine data from live transactional data in PostgreSQL, current data in Redshift, and archived historical data. The solution must keep only the most recent 15 months of data in Amazon Redshift to reduce costs.

Which combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Configure the Amazon Redshift Federated Query feature to query live transactional data that is in the PostgreSQL database.

B.

Configure Amazon Redshift Spectrum to query live transactional data that is in the PostgreSQL database.

C.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 by using the UNLOAD command. Delete the old data from the Redshift cluster. Configure Amazon Redshift Spectrum to access historical data in Amazon S3.

D.

Schedule a monthly job to copy data that is older than 15 months to Amazon S3 Glacier Flexible Retrieval by using the UNLOAD command. Delete the old data from the Redshift duster. Configure Redshift Spectrum to access historical data from S3 Glacier Flexible Retrieval.

E.

Create a materialized view in Amazon Redshift that combines live, current, and historical data from different sources.

Buy Now
Questions 44

A company created an extract, transform, and load (ETL) data pipeline in AWS Glue. A data engineer must crawl a table that is in Microsoft SQL Server. The data engineer needs to extract, transform, and load the output of the crawl to an Amazon S3 bucket. The data engineer also must orchestrate the data pipeline.

Which AWS service or feature will meet these requirements MOST cost-effectively?

Options:

A.

AWS Step Functions

B.

AWS Glue workflows

C.

AWS Glue Studio

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

Buy Now
Questions 45

A company stores logs in an Amazon S3 bucket. When a data engineer attempts to access several log files, the data engineer discovers that some files have been unintentionally deleted.

The data engineer needs a solution that will prevent unintentional file deletion in the future.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Manually back up the S3 bucket on a regular basis.

B.

Enable S3 Versioning for the S3 bucket.

C.

Configure replication for the S3 bucket.

D.

Use an Amazon S3 Glacier storage class to archive the data that is in the S3 bucket.

Buy Now
Questions 46

A company is planning to use a provisioned Amazon EMR cluster that runs Apache Spark jobs to perform big data analysis. The company requires high reliability. A big data team must follow best practices for running cost-optimized and long-running workloads on Amazon EMR. The team must find a solution that will maintain the company's current level of performance.

Which combination of resources will meet these requirements MOST cost-effectively? (Choose two.)

Options:

A.

Use Hadoop Distributed File System (HDFS) as a persistent data store.

B.

Use Amazon S3 as a persistent data store.

C.

Use x86-based instances for core nodes and task nodes.

D.

Use Graviton instances for core nodes and task nodes.

E.

Use Spot Instances for all primary nodes.

Buy Now
Questions 47

A data engineer is configuring an AWS Glue job to read data from an Amazon S3 bucket. The data engineer has set up the necessary AWS Glue connection details and an associated IAM role. However, when the data engineer attempts to run the AWS Glue job, the data engineer receives an error message that indicates that there are problems with the Amazon S3 VPC gateway endpoint.

The data engineer must resolve the error and connect the AWS Glue job to the S3 bucket.

Which solution will meet this requirement?

Options:

A.

Update the AWS Glue security group to allow inbound traffic from the Amazon S3 VPC gateway endpoint.

B.

Configure an S3 bucket policy to explicitly grant the AWS Glue job permissions to access the S3 bucket.

C.

Review the AWS Glue job code to ensure that the AWS Glue connection details include a fully qualified domain name.

D.

Verify that the VPC's route table includes inbound and outbound routes for the Amazon S3 VPC gateway endpoint.

Buy Now
Questions 48

A data engineer is using an AWS Glue ETL job to remove outdated customer records from a table that contains customer account information. The data engineer is using the following SQL command:

MERGE INTO accounts t USING monthly_accounts_update s

ON t.customer = s.customer

WHEN MATCHED THEN DELETE

What will happen when the data engineer runs the SQL command?

Options:

A.

All customer records that exist in both the customer accounts table and the monthly_accounts_update table will be deleted from the accounts table.

B.

Only customer records that are present in both tables will be retained in the customer accounts table.

C.

The monthly_accounts_update table will be deleted.

D.

No records will be deleted because the command syntax is not valid in AWS Glue.

Buy Now
Questions 49

A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.

The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.

Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)

Options:

A.

Use FluentBit to collect logs. Use OpenTelemetry to collect traces.

B.

Use Amazon CloudWatch to collect logs. Use Amazon Kinesis to collect traces.

C.

Use Amazon CloudWatch to collect logs. Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) to collect traces.

D.

Use Amazon OpenSearch to correlate the logs and traces.

E.

Use AWS Glue to correlate the logs and traces.

Buy Now
Questions 50

A company uses AWS Glue Apache Spark jobs to handle extract, transform, and load (ETL) workloads. The company has enabled logging and monitoring for all AWS Glue jobs. One of the AWS Glue jobs begins to fail. A data engineer investigates the error and wants to examine metrics for all individual stages within the job. How can the data engineer access the stage metrics?

Options:

A.

Examine the AWS Glue job and stage details in the Spark UI.

B.

Examine the AWS Glue job and stage metrics in Amazon CloudWatch.

C.

Examine the AWS Glue job and stage logs in AWS CloudTrail logs.

D.

Examine the AWS Glue job and stage details by using the run insights feature on the job.

Buy Now
Questions 51

A company stores time-series data that is collected from streaming services in an Amazon S3 bucket. The company must ensure that only workloads that are deployed within the company's VPC can access the data.

Which solution will meet this requirement?

Options:

A.

Create an S3 bucket policy that uses a condition to allow access only to traffic that originates from the company's VPC.

B.

Apply a security group to the S3 bucket that allows connections only from the company's VPC CIDR block.

C.

Define an IAM policy that denies access to all users unless the request originates from within the company's VPC.

D.

Use a network ACL on the VPC subnets to allow only specific resources to access the S3 bucket.

Buy Now
Questions 52

A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.

The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.

Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)

Options:

A.

Use AWS CloudFormation to automate the Step Functions state machine deployment. Create a step to pause the state machine during the EMR jobs that fail. Configure the step to wait for a human user to send approval through an email message. Include details of the EMR task in the email message for further analysis.

B.

Verify that the Step Functions state machine code has all IAM permissions that are necessary to create and run the EMR jobs. Verify that the Step Functions state machine code also includes IAM permissions to access the Amazon S3 buckets that the EMR jobs use. Use Access Analyzer for S3 to check the S3 access properties.

C.

Check for entries in Amazon CloudWatch for the newly created EMR cluster. Change the AWS Step Functions state machine code to use Amazon EMR on EKS. Change the IAM access policies and the security group configuration for the Step Functions state machine code to reflect inclusion of Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Query the flow logs for the VPC. Determine whether the traffic that originates from the EMR cluster can successfully reach the data providers. Determine whether any security group that might be attached to the Amazon EMR cluster allows connections to the data source servers on the informed ports.

E.

Check the retry scenarios that the company configured for the EMR jobs. Increase the number of seconds in the interval between each EMR task. Validate that each fallback state has the appropriate catch for each decision state. Configure an Amazon Simple Notification Service (Amazon SNS) topic to store the error messages.

Buy Now
Questions 53

A company uses AWS Glue Data Catalog to index data that is uploaded to an Amazon S3 bucket every day. The company uses a daily batch processes in an extract, transform, and load (ETL) pipeline to upload data from external sources into the S3 bucket.

The company runs a daily report on the S3 data. Some days, the company runs the report before all the daily data has been uploaded to the S3 bucket. A data engineer must be able to send a message that identifies any incomplete data to an existing Amazon Simple Notification Service (Amazon SNS) topic.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Create data quality checks for the source datasets that the daily reports use. Create a new AWS managed Apache Airflow cluster. Run the data quality checks by using Airflow tasks that run data quality queries on the columns data type and the presence of null values. Configure Airflow Directed Acyclic Graphs (DAGs) to send an email notification that informs the data engineer about the incomplete datasets to the SNS topic.

B.

Create data quality checks on the source datasets that the daily reports use. Create a new Amazon EMR cluster. Use Apache Spark SQL to create Apache Spark jobs in the EMR cluster that run data quality queries on the columns data type and the presence of null values. Orchestrate the ETL pipeline by using an AWS Step Functions workflow. Configure the workflow to send an email notification that informs the data engineer about the incomplete da

C.

Create data quality checks on the source datasets that the daily reports use. Create data quality actions by using AWS Glue workflows to confirm the completeness and consistency of the datasets. Configure the data quality actions to create an event in Amazon EventBridge if a dataset is incomplete. Configure EventBridge to send the event that informs the data engineer about the incomplete datasets to the Amazon SNS topic.

D.

Create AWS Lambda functions that run data quality queries on the columns data type and the presence of null values. Orchestrate the ETL pipeline by using an AWS Step Functions workflow that runs the Lambda functions. Configure the Step Functions workflow to send an email notification that informs the data engineer about the incomplete datasets to the SNS topic.

Buy Now
Questions 54

A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.

The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.

Which solution will meet these requirements with the LEAST implementation effort?

Options:

A.

Add a new transform that is defined by a SQL query to each Glue ETL job. Use the SQL query to implement a ruleset that includes the data quality rules that need to be evaluated.

B.

Add a new Evaluate Data Quality transform to each Glue ETL job. Use Data Quality Definition Language (DQDL) to implement a ruleset that includes the data quality rules that need to be evaluated.

C.

Add a new custom transform to each Glue ETL job. Use the PyDeequ library to implement a ruleset that includes the data quality rules that need to be evaluated.

D.

Add a new custom transform to each Glue ETL job. Use the Great Expectations library to implement a ruleset that includes the data quality rules that need to be evaluated.

Buy Now
Questions 55

A company stores sensitive data in an Amazon Redshift table. The company needs to give specific users the ability to access the sensitive data. The company must not create duplication in the data.

Customer support users must be able to see the last four characters of the sensitive data. Audit users must be able to see the full value of the sensitive data. No other users can have the ability to access the sensitive information.

Which solution will meet these requirements?

Options:

A.

Create a dynamic data masking policy to allow access based on each user role. Create IAM roles that have specific access permissions. Attach the masking policy to the column that contains sensitive data.

B.

Enable metadata security on the Redshift cluster. Create IAM users and IAM roles for the customer support users and the audit users. Grant the IAM users and IAM roles permissions to view the metadata in the Redshift cluster.

C.

Create a row-level security policy to allow access based on each user role. Create IAM roles that have specific access permissions. Attach the security policy to the table.

D.

Create an AWS Glue job to redact the sensitive data and to load the data into a new Redshift table.

Buy Now
Questions 56

A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.

Which combination of AWS services will implement a data mesh? (Choose two.)

Options:

A.

Use Amazon Aurora for data storage. Use an Amazon Redshift provisioned cluster for data analysis.

B.

Use Amazon S3 for data storage. Use Amazon Athena for data analysis.

C.

Use AWS Glue DataBrewfor centralized data governance and access control.

D.

Use Amazon RDS for data storage. Use Amazon EMR for data analysis.

E.

Use AWS Lake Formation for centralized data governance and access control.

Buy Now
Questions 57

A company receives a data file from a partner each day in an Amazon S3 bucket. The company uses a daily AW5 Glue extract, transform, and load (ETL) pipeline to clean and transform each data file. The output of the ETL pipeline is written to a CSV file named Dairy.csv in a second 53 bucket.

Occasionally, the daily data file is empty or is missing values for required fields. When the file is missing data, the company can use the previous day's CSV file.

A data engineer needs to ensure that the previous day's data file is overwritten only if the new daily file is complete and valid.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Invoke an AWS Lambda function to check the file for missing data and to fill in missing values in required fields.

B.

Configure the AWS Glue ETL pipeline to use AWS Glue Data Quality rules. Develop rules in Data Quality Definition Language (DQDL) to check for missing values in required files and empty files.

C.

Use AWS Glue Studio to change the code in the ETL pipeline to fill in any missing values in the required fields with the most common values for each field.

D.

Run a SQL query in Amazon Athena to read the CSV file and drop missing rows. Copy the corrected CSV file to the second S3 bucket.

Buy Now
Questions 58

A data engineer uses Amazon Kinesis Data Streams to ingest and process records that contain user behavior data from an application every day.

The data engineer notices that the data stream is experiencing throttling because hot shards receive much more data than other shards in the data stream.

How should the data engineer resolve the throttling issue?

Options:

A.

Use a random partition key to distribute the ingested records.

B.

Increase the number of shards in the data stream. Distribute the records across the shards.

C.

Limit the number of records that are sent each second by the producer to match the capacity of the stream.

D.

Decrease the size of the records that the producer sends to match the capacity of the stream.

Buy Now
Questions 59

A data engineer needs to debug an AWS Glue job that reads from Amazon S3 and writes to Amazon Redshift. The data engineer enabled the bookmark feature for the AWS Glue job. The data engineer has set the maximum concurrency for the AWS Glue job to 1.

The AWS Glue job is successfully writing the output to Amazon Redshift. However, the Amazon S3 files that were loaded during previous runs of the AWS Glue job are being reprocessed by subsequent runs.

What is the likely reason the AWS Glue job is reprocessing the files?

Options:

A.

The AWS Glue job does not have the s3:GetObjectAcl permission that is required for bookmarks to work correctly.

B.

The maximum concurrency for the AWS Glue job is set to 1.

C.

The data engineer incorrectly specified an older version of AWS Glue for the Glue job.

D.

The AWS Glue job does not have a required commit statement.

Buy Now
Questions 60

A car sales company maintains data about cars that are listed for sale in an area. The company receives data about new car listings from vendors who upload the data daily as compressed files into Amazon S3. The compressed files are up to 5 KB in size. The company wants to see the most up-to-date listings as soon as the data is uploaded to Amazon S3.

A data engineer must automate and orchestrate the data processing workflow of the listings to feed a dashboard. The data engineer must also provide the ability to perform one-time queries and analytical reporting. The query solution must be scalable.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use an Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Apache Hive for one-time queries and analytical reporting. Use Amazon OpenSearch Service to bulk ingest the data into compute optimized instances. Use OpenSearch Dashboards in OpenSearch Service for the dashboard.

B.

Use a provisioned Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

C.

Use AWS Glue to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Redshift Spectrum for one-time queries and analytical reporting. Use OpenSearch Dashboards in Amazon OpenSearch Service for the dashboard.

D.

Use AWS Glue to process incoming data. Use AWS Lambda and S3 Event Notifications to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

Buy Now
Questions 61

A company has used an Amazon Redshift table that is named Orders for 6 months. The company performs weekly updates and deletes on the table. The table has an interleaved sort key on a column that contains AWS Regions.

The company wants to reclaim disk space so that the company will not run out of storage space. The company also wants to analyze the sort key column.

Which Amazon Redshift command will meet these requirements?

Options:

A.

VACUUM FULL Orders

B.

VACUUM DELETE ONLY Orders

C.

VACUUM REINDEX Orders

D.

VACUUM SORT ONLY Orders

Buy Now
Questions 62

A company's data engineer needs to optimize the performance of table SQL queries. The company stores data in an Amazon Redshift cluster. The data engineer cannot increase the size of the cluster because of budget constraints.

The company stores the data in multiple tables and loads the data by using the EVEN distribution style. Some tables are hundreds of gigabytes in size. Other tables are less than 10 MB in size.

Which solution will meet these requirements?

Options:

A.

Keep using the EVEN distribution style for all tables. Specify primary and foreign keys for all tables.

B.

Use the ALL distribution style for large tables. Specify primary and foreign keys for all tables.

C.

Use the ALL distribution style for rarely updated small tables. Specify primary and foreign keys for all tables.

D.

Specify a combination of distribution, sort, and partition keys for all tables.

Buy Now
Questions 63

A data engineer has two datasets that contain sales information for multiple cities and states. One dataset is named reference, and the other dataset is named primary.

The data engineer needs a solution to determine whether a specific set of values in the city and state columns of the primary dataset exactly match the same specific values in the reference dataset. The data engineer wants to use Data Quality Definition Language (DQDL) rules in an AWS Glue Data Quality job.

Which rule will meet these requirements?

Options:

A.

DatasetMatch "reference" "city->ref_city, state->ref_state" = 1.0

B.

ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" = 1.0

C.

DatasetMatch "reference" "city->ref_city, state->ref_state" = 100

D.

ReferentialIntegrity "city,state" "reference.{ref_city,ref_state}" = 100

Buy Now
Questions 64

A company has a gaming application that stores data in Amazon DynamoDB tables. A data engineer needs to ingest the game data into an Amazon OpenSearch Service cluster. Data updates must occur in near real time.

Which solution will meet these requirements?

Options:

A.

Use AWS Step Functions to periodically export data from the Amazon DynamoDB tables to an Amazon S3 bucket. Use an AWS Lambda function to load the data into Amazon OpenSearch Service.

B.

Configure an AW5 Glue job to have a source of Amazon DynamoDB and a destination of Amazon OpenSearch Service to transfer data in near real time.

C.

Use Amazon DynamoDB Streams to capture table changes. Use an AWS Lambda function to process and update the data in Amazon OpenSearch Service.

D.

Use a custom OpenSearch plugin to sync data from the Amazon DynamoDB tables.

Buy Now
Questions 65

A company has as JSON file that contains personally identifiable information (PIT) data and non-PII data. The company needs to make the data available for querying and analysis. The non-PII data must be available to everyone in the company. The PII data must be available only to a limited group of employees. Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Store the JSON file in an Amazon S3 bucket. Configure AWS Glue to split the file into one file that contains the PII data and one file that contains the non-PII data. Store the output files in separate S3 buckets. Grant the required access to the buckets based on the type of user.

B.

Store the JSON file in an Amazon S3 bucket. Use Amazon Macie to identify PII data and to grant access based on the type of user.

C.

Store the JSON file in an Amazon S3 bucket. Catalog the file schema in AWS Lake Formation. Use Lake Formation permissions to provide access to the required data based on the type of user.

D.

Create two Amazon RDS PostgreSQL databases. Load the PII data and the non-PII data into the separate databases. Grant access to the databases based on the type of user.

Buy Now
Exam Name: AWS Certified Data Engineer - Associate (DEA-C01)
Last Update: Dec 9, 2025
Questions: 218
Data-Engineer-Associate pdf

Data-Engineer-Associate PDF

$29.75  $84.99
Data-Engineer-Associate Engine

Data-Engineer-Associate Testing Engine

$35  $99.99
Data-Engineer-Associate PDF + Engine

Data-Engineer-Associate PDF + Testing Engine

$47.25  $134.99