Case study
An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.
The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.
The ML engineer needs to use an Amazon SageMaker built-in algorithm to train the model.
Which algorithm should the ML engineer use to meet this requirement?
An ML engineer is using an Amazon SageMaker Studio notebook to train a neural network by creating an estimator. The estimator runs a Python training script that uses Distributed Data Parallel (DDP) on a single instance that has more than one GPU.
The ML engineer discovers that the training script is underutilizing GPU resources. The ML engineer must identify the point in the training script where resource utilization can be optimized.
Which solution will meet this requirement?
A company is exploring generative AI and wants to add a new product feature. An ML engineer is making API calls from existing Amazon EC2 instances to Amazon Bedrock.
The EC2 instances are in a private subnet and must remain private during the implementation. The EC2 instances have a security group that allows access to all IP addresses in the private subnet.
What should the ML engineer do to establish a connection between the EC2 instances and Amazon Bedrock?
A company is developing an internal cost-estimation tool that uses an ML model in Amazon SageMaker AI. Users upload high-resolution images to the tool.
The model must process each image and predict the cost of the object in the image. The model also must notify the user when processing is complete.
Which solution will meet these requirements?
An ML engineer is using Amazon Quick Suite (previously known as Amazon QuickSight) anomaly detection to detect very high or very low machine operating temperatures compared to normal. The ML engineer sets the Severity parameter to Low and above. The ML engineer sets the Direction parameter to All.
What effect will the ML engineer observe in the anomaly detection results if the ML engineer changes the Direction parameter to Lower than expected?
An ML engineer normalized training data by using min-max normalization in AWS Glue DataBrew. The ML engineer must normalize production inference data in the same way before passing the data to the model.
Which solution will meet this requirement?
An ML engineer needs to implement a solution to host a trained ML model. The rate of requests to the model will be inconsistent throughout the day.
The ML engineer needs a scalable solution that minimizes costs when the model is not in use. The solution also must maintain the model's capacity to respond to requests during times of peak usage.
Which solution will meet these requirements?
A company uses Amazon Athena to query a dataset in Amazon S3. The dataset has a target variable that the company wants to predict.
The company needs to use the dataset in a solution to determine if a model can predict the target variable.
Which solution will provide this information with the LEAST development effort?
A company uses AWS CodePipeline to orchestrate a continuous integration and continuous delivery (CI/CD) pipeline for ML models and applications.
Select and order the steps from the following list to describe a CI/CD process for a successful deployment. Select each step one time. (Select and order FIVE.)
. CodePipeline deploys ML models and applications to production.
· CodePipeline detects code changes and starts to build automatically.
. Human approval is provided after testing is successful.
. The company builds and deploys ML models and applications to staging servers for testing.
. The company commits code changes or new training datasets to a Git repository.
Case study
An ML engineer is developing a fraud detection model on AWS. The training dataset includes transaction logs, customer profiles, and tables from an on-premises MySQL database. The transaction logs and customer profiles are stored in Amazon S3.
The dataset has a class imbalance that affects the learning of the model's algorithm. Additionally, many of the features have interdependencies. The algorithm is not capturing all the desired underlying patterns in the data.
The training dataset includes categorical data and numerical data. The ML engineer must prepare the training dataset to maximize the accuracy of the model.
Which action will meet this requirement with the LEAST operational overhead?
An ML engineer is building a logistic regression model to predict customer churn for subscription services. The dataset contains two string variables: location and job_seniority_level.
The location variable has 3 distinct values, and the job_seniority_level variable has over 10 distinct values.
The ML engineer must perform preprocessing on the variables.
Which solution will meet this requirement?
A company has an application that uses different APIs to generate embeddings for input text. The company needs to implement a solution to automatically rotate the API tokens every 3 months.
Which solution will meet this requirement?
A company that has hundreds of data scientists is using Amazon SageMaker to create ML models. The models are in model groups in the SageMaker Model Registry.
The data scientists are grouped into three categories: computer vision, natural language processing (NLP), and speech recognition. An ML engineer needs to implement a solution to organize the existing models into these groups to improve model discoverability at scale. The solution must not affect the integrity of the model artifacts and their existing groupings.
Which solution will meet these requirements?
An ML engineer needs to deploy ML models to get inferences from large datasets in an asynchronous manner. The ML engineer also needs to implement scheduled monitoring of the data quality of the models. The ML engineer must receive alerts when changes in data quality occur.
Which solution will meet these requirements?
A company has multiple models that are hosted on Amazon SageMaker Al. The models need to be re-trained. The requirements for each model are different, so the company needs to choose different deployment strategies to transfer all requests to a new model.
Select the correct strategy from the following list for each requirement. Select each strategy one time. (Select THREE.)
. Canary traffic shifting
. Linear traffic shifting guardrail
. All at once traffic shifting
A healthcare analytics company wants to segment patients into groups that have similar risk factors to develop personalized treatment plans. The company has a dataset that includes patient health records, medication history, and lifestyle changes. The company must identify the appropriate algorithm to determine the number of groups by using hyperparameters.
Which solution will meet these requirements?
A company stores training data as a .csv file in an Amazon S3 bucket. The company must encrypt the data and must control which applications have access to the encryption key.
Which solution will meet these requirements?
A company wants to host an ML model on Amazon SageMaker. An ML engineer is configuring a continuous integration and continuous delivery (Cl/CD) pipeline in AWS CodePipeline to deploy the model. The pipeline must run automatically when new training data for the model is uploaded to an Amazon S3 bucket.
Select and order the pipeline's correct steps from the following list. Each step should be selected one time or not at all. (Select and order three.)
• An S3 event notification invokes the pipeline when new data is uploaded.
• S3 Lifecycle rule invokes the pipeline when new data is uploaded.
• SageMaker retrains the model by using the data in the S3 bucket.
• The pipeline deploys the model to a SageMaker endpoint.
• The pipeline deploys the model to SageMaker Model Registry.
A travel company wants to create an ML model to recommend the next airport destination for its users. The company has collected millions of data records about user location, recent search history on the company's website, and 2,000 available airports. The data has several categorical features with a target column that is expected to have a high-dimensional sparse matrix.
The company needs to use Amazon SageMaker AI built-in algorithms for the model. An ML engineer converts the categorical features by using one-hot encoding.
Which algorithm should the ML engineer implement to meet these requirements?
An ML engineer needs to use data with Amazon SageMaker Canvas to train an ML model. The data is stored in Amazon S3 and is complex in structure. The ML engineer must use a file format that minimizes processing time for the data.
Which file format will meet these requirements?
A company needs to run a batch data-processing job on Amazon EC2 instances. The job will run during the weekend and will take 90 minutes to finish running. The processing can handle interruptions. The company will run the job every weekend for the next 6 months.
Which EC2 instance purchasing option will meet these requirements MOST cost-effectively?
A company has trained and deployed an ML model by using Amazon SageMaker. The company needs to implement a solution to record and monitor all the API call events for the SageMaker endpoint. The solution also must provide a notification when the number of API call events breaches a threshold.
Use SageMaker Debugger to track the inferences and to report metrics. Create a custom rule to provide a notification when the threshold is breached.
Which solution will meet these requirements?
A company has a Retrieval Augmented Generation (RAG) application that uses a vector database to store embeddings of documents. The company must migrate the application to AWS and must implement a solution that provides semantic search of text files. The company has already migrated the text repository to an Amazon S3 bucket.
Which solution will meet these requirements?
A company has deployed an XGBoost prediction model in production to predict if a customer is likely to cancel a subscription. The company uses Amazon SageMaker Model Monitor to detect deviations in the F1 score.
During a baseline analysis of model quality, the company recorded a threshold for the F1 score. After several months of no change, the model's F1 score decreases significantly.
What could be the reason for the reduced F1 score?
An ML engineer needs to process thousands of existing CSV objects and new CSV objects that are uploaded. The CSV objects are stored in a central Amazon S3 bucket and have the same number of columns. One of the columns is a transaction date. The ML engineer must query the data based on the transaction date.
Which solution will meet these requirements with the LEAST operational overhead?
An ML engineer is setting up an Amazon SageMaker AI pipeline for an ML model. The pipeline must automatically initiate a retraining job if any data drift is detected.
How should the ML engineer set up the pipeline to meet this requirement?
A company ingests sales transaction data using Amazon Data Firehose into Amazon OpenSearch Service. The Firehose buffer interval is set to 60 seconds.
The company needs sub-second latency for a real-time OpenSearch dashboard.
Which architectural change will meet this requirement?
A company has a binary classification model in production. An ML engineer needs to develop a new version of the model.
The new model version must maximize correct predictions of positive labels and negative labels. The ML engineer must use a metric to recalibrate the model to meet these requirements.
Which metric should the ML engineer use for the model recalibration?
A credit card company has a fraud detection model in production on an Amazon SageMaker endpoint. The company develops a new version of the model. The company needs to assess the new model's performance by using live data and without affecting production end users.
Which solution will meet these requirements?
An ML engineer has an Amazon Comprehend custom model in Account A in the us-east-1 Region. The ML engineer needs to copy the model to Account В in the same Region.
Which solution will meet this requirement with the LEAST development effort?
A company is building an Amazon SageMaker AI pipeline for an ML model. The pipeline uses distributed processing and distributed training.
An ML engineer needs to encrypt network communication between instances that run distributed jobs. The ML engineer configures the distributed jobs to run in a private VPC.
What should the ML engineer do to meet the encryption requirement?
A company is developing an ML model to predict customer satisfaction. The company needs to use survey feedback and the past satisfaction level of customers to predict the future satisfaction level of customers.
The dataset includes a column named Feedback that contains long text responses. The dataset also includes a column named Satisfaction Level that contains three distinct values for past customer satisfaction: High, Medium, and Low. The company must apply encoding methods to transform the data in each column.
Which solution will meet these requirements?
A company is developing ML models by using PyTorch and TensorFlow estimators with Amazon SageMaker AI. An ML engineer configures the SageMaker AI estimator and now needs to initiate a training job that uses a training dataset.
Which SageMaker AI SDK method can initiate the training job?
A company uses a training job on Amazon SageMaker Al to train a neural network. The job first trains a model and then evaluates the model's performance ag
test dataset. The company uses the results from the evaluation phase to decide if the trained model will go to production.
The training phase takes too long. The company needs solutions that can shorten training time without decreasing the model's final performance.
Select the correct solutions from the following list to meet the requirements for each description. Select each solution one time or not at all. (Select THREE.)
. Change the epoch count.
. Choose an Amazon EC2 Spot Fleet.
· Change the batch size.
. Use early stopping on the training job.
· Use the SageMaker Al distributed data parallelism (SMDDP) library.
. Stop the training job.
An ML engineer is training a simple neural network model. The model’s performance improves initially and then degrades after a certain number of epochs.
Which solutions will mitigate this problem? (Select TWO.)
An ML engineer decides to use Amazon SageMaker AI automated model tuning (AMT) for hyperparameter optimization (HPO). The ML engineer requires a tuning strategy that uses regression to slowly and sequentially select the next set of hyperparameters based on previous runs. The strategy must work across small hyperparameter ranges.
Which solution will meet these requirements?
A company needs to give its ML engineers appropriate access to training data. The ML engineers must access training data from only their own business group. The ML engineers must not be allowed to access training data from other business groups.
The company uses a single AWS account and stores all the training data in Amazon S3 buckets. All ML model training occurs in Amazon SageMaker.
Which solution will provide the ML engineers with the appropriate access?
A company has developed a new ML model. The company requires online model validation on 10% of the traffic before the company fully releases the model in production. The company uses an Amazon SageMaker endpoint behind an Application Load Balancer (ALB) to serve the model.
Which solution will set up the required online validation with the LEAST operational overhead?
A company wants to develop an ML model by using tabular data from its customers. The data contains meaningful ordered features with sensitive information that should not be discarded. An ML engineer must ensure that the sensitive data is masked before another team starts to build the model.
Which solution will meet these requirements?
A company has significantly increased the amount of data stored as .csv files in an Amazon S3 bucket. Data transformation scripts and queries are now taking much longer than before.
An ML engineer must implement a solution to optimize the data for query performance with the LEAST operational overhead.
Which solution will meet this requirement?
A company is training a deep learning model to detect abnormalities in images. The company has limited GPU resources and a large hyperparameter space to explore. The company needs to test different configurations and avoid wasting computation time on poorly performing models that show weak validation accuracy in early epochs.
Which hyperparameter optimization strategy should the company use?
A company has an ML model that needs to run one time each night to predict stock values. The model input is 3 MB of data that is collected during the current day. The model produces the predictions for the next day. The prediction process takes less than 1 minute to finish running.
How should the company deploy the model on Amazon SageMaker to meet these requirements?
A company is using Amazon SageMaker AI to build an ML model to predict customer behavior. The company needs to explain the bias in the model to an auditor. The explanation must focus on demographic data of the customers.
Which solution will meet these requirements?
A gaming company needs to deploy a natural language processing (NLP) model to moderate a chat forum in a game. The workload experiences heavy usage during evenings and weekends but minimal activity during other hours.
Which solution will meet these requirements MOST cost-effectively?
An ML engineer needs to use an ML model to predict the price of apartments in a specific location.
Which metric should the ML engineer use to evaluate the model’s performance?
Case Study
A company is building a web-based AI application by using Amazon SageMaker. The application will provide the following capabilities and features: ML experimentation, training, a
central model registry, model deployment, and model monitoring.
The application must ensure secure and isolated use of training data during the ML lifecycle. The training data is stored in Amazon S3.
The company needs to use the central model registry to manage different versions of models in the application.
Which action will meet this requirement with the LEAST operational overhead?
A company needs to analyze a large dataset that is stored in Amazon S3 in Apache Parquet format. The company wants to use one-hot encoding for some of the columns.
The company needs a no-code solution to transform the data. The solution must store the transformed data back to the same S3 bucket for model training.
Which solution will meet these requirements?
An ML engineer is preparing a dataset that contains medical records to train an ML model to predict the likelihood of patients developing diseases.
The dataset contains columns for patient ID, age, medical conditions, test results, and a "Disease" target column.
How should the ML engineer configure the data to train the model?
A company wants to improve its customer retention ML model. The current model has 85% accuracy and a new model shows 87% accuracy in testing. The company wants to validate the new model’s performance in production.
Which solution will meet these requirements?
An ML engineer receives datasets that contain missing values, duplicates, and extreme outliers. The ML engineer must consolidate these datasets into a single data frame and must prepare the data for ML.
Which solution will meet these requirements?
A company collects customer data daily and stores it as compressed files in an Amazon S3 bucket partitioned by date. Each month, analysts process the data, check data quality, and upload results to Amazon QuickSight dashboards.
An ML engineer needs to automatically check data quality before the data is sent to QuickSight, with the LEAST operational overhead.
Which solution will meet these requirements?
A company is developing a generative AI conversational interface to assist customers with payments. The company wants to use an ML solution to detect customer intent. The company does not have training data to train a model.
Which solution will meet these requirements?
Case Study
A company is building a web-based AI application by using Amazon SageMaker. The application will provide the following capabilities and features: ML experimentation, training, a
central model registry, model deployment, and model monitoring.
The application must ensure secure and isolated use of training data during the ML lifecycle. The training data is stored in Amazon S3.
The company needs to run an on-demand workflow to monitor bias drift for models that are deployed to real-time endpoints from the application.
Which action will meet this requirement?
A company uses Amazon SageMaker Studio to develop an ML model. The company has a single SageMaker Studio domain. An ML engineer needs to implement a solution that provides an automated alert when SageMaker compute costs reach a specific threshold.
Which solution will meet these requirements?
An ML engineer needs to create data ingestion pipelines and ML model deployment pipelines on AWS. All the raw data is stored in Amazon S3 buckets.
Which solution will meet these requirements?
An ML engineer wants to use Amazon SageMaker Data Wrangler to perform preprocessing on a dataset. The ML engineer wants to use the processed dataset to train a classification model. During preprocessing, the ML engineer notices that a text feature has a range of thousands of values that differ only by spelling errors. The ML engineer needs to apply an encoding method so that after preprocessing is complete, the text feature can be used to train the model.
Which solution will meet these requirements?
A company is building a deep learning model on Amazon SageMaker. The company uses a large amount of data as the training dataset. The company needs to optimize the model's hyperparameters to minimize the loss function on the validation dataset.
Which hyperparameter tuning strategy will accomplish this goal with the LEAST computation time?
An ML engineer needs to deploy a trained model based on a genetic algorithm. Predictions can take several minutes, and requests can include up to 100 MB of data.
Which deployment solution will meet these requirements with the LEAST operational overhead?
An ML engineer must choose the appropriate Amazon SageMaker algorithm to solve specific AI problems.
Select the correct SageMaker built-in algorithm from the following list for each use case. Each algorithm should be selected one time.
• Random Cut Forest (RCF) algorithm
• Semantic segmentation algorithm
• Sequence-to-Sequence (seq2seq) algorithm