Summer Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: cramtreat

ANS-C01 Amazon AWS Certified Advanced Networking - Specialty Questions and Answers

Questions 4

A company's network engineer must implement a cloud-based networking environment for a network operations team to centrally manage. Other teams will use the environment. Each team must be able to deploy infrastructure to the environment and must be able to manage its own resources. The environment must feature IPv4 and IPv6 support and must provide internet connectivity in a dual-stack configuration.

The company has an organization in AWS Organizations that contains a workload account for the teams. The network engineer creates a new networking account in the organization.

Which combination of steps should the network engineer take next to meet the requirements? (Select THREE.)

Options:

A.

Create a new VPC. Associate an IPv4 CIDR block of 10.0.0.0/16 and specify an IPv6 block of 2001: db8:c5a:6000::/56. Provision subnets by assigning /24 IPv4 CIDR blocks and /64 IPv6 CIDR blocks.

B.

Create a new VPC. Associate an IPv4 CIDR block of 10.0.0.0/16 and use an Amazon-provided IPv6 CIDR block. Provision subnets by assigning /24 IPv4 CIDR blocks and 164 IPv6 CIDR blocks.

C.

Enable sharing of resources within the organization by using AWS Resource Access Manager (AWS RAM). Create a resource share in the networking account, select theprovisioned subnets, and share the provisioned subnets with the target workload account. Use the workload account to accept the resource share through AWS RAM.

D.

Enable sharing of resources within the organization by using AWS Resource Access Manager (AWS RAM). Create a resource share in the networking account, select the new VPC. and share the new VPC with the target workload account. Use the workload account to accept the resource share through AWS RAM.

E.

Create an internet gateway and an egress-only internet gateway. Deploy NAT gateways to the public subnets. Associate the internet gateway with the new VPC. Update the route tables. Associate the route tables with the relevant subnets.

F.

Create an internet gateway. Deploy NAT instances to public subnets. Update the route tables. Associate the route tables with the relevant subnets.

Buy Now
Questions 5

A company has business operations in the United States and in Europe. The company's public applications are running on AWS and use three transit gateways. The transit gateways are located in the us-west-2. us-east-1. and eu-central-1 Regions. All the transit gateways are connected to each other in a full mesh configuration.

The company accidentally removes the route to the eu-central-1 VPCs from the us-west-2 transit gateway route table. The company also accidentally removes the route to the us-west-2 VPCs from the eu-central-1 transit gateway route table.

How can a network engineer identify the misconfiguration with the LEAST operational overhead?

Options:

A.

Use the Route Analyzer feature for AWS Transit Gateway Network Manager

B.

Use the AWSSupport-SetuplPMonitoringFromVPC AWS Systems Manager Automation runbook. Push network telemetry data to Amazon CloudWatch Logs for analysis.

C.

Use VPC flow togs in eu-central-1 and us-west-2 to analyze the missing routes.

D.

Use Amazon VPC Traffic Mirroring in eu-central-1 or us-west-2 to take packet captures and troubleshoot the connectivity issues.

Buy Now
Questions 6

A company has multiple VPCs with subnets that use IPv4. Traffic from the VPCs to the internet uses a NAT gateway. The company wants to transition to IPv6.

A network engineer creates multiple IPv6-only subnets in an existing testing VPC. The network engineer deploys a new Amazon EC2 instance that has an IPv6 address into one of the subnets. During testing, the network engineer discovers that the new EC2 instance is not able to communicate with an IPv4-only service through the internet. The network engineer needs to enable the IPv6 EC2 instance to communicate with the IPv4-only service.

Which solution will meet this requirement?

Options:

A.

Enable DNS64 for the IPv6-only subnets. Update the route tables for the IPv6-only subnets to send traffic through the NAT gateway.

B.

Enable NAT64 for the testing VPC. Reconfigure the existing NAT gateway to support IPv6.

C.

Enable DNS64 for the new EC2 instance. Create a new egress-only internet gateway that supports IPv6.

D.

Enable NAT64 for each route table. Create a new NAT gateway that supports both IPv4 and IPv6.

Buy Now
Questions 7

A company is migrating an application from on premises to AWS. The company will host the application on Amazon EC2 instances that are deployed in a single VPC. During the migration period, DNS queries from the EC2 instances must be able to resolve names of on-premises servers. The migration is expected to take 3 months After the 3-month migration period, the resolution of on-premises servers will no longer be needed.

What should a network engineer do to meet these requirements with the LEAST amount of configuration?

Options:

A.

Set up an AWS Site-to-Site VPN connection between on premises and AWS. Deploy an Amazon Route 53 Resolver outbound endpoint in the Region that is hosting the VPC.

B.

Set up an AWS Direct Connect connection with a private VIF. Deploy an Amazon Route 53 Resolver inbound endpoint and a Route 53 Resolver outbound endpoint in the Region that is hosting the VPC.

C.

Set up an AWS Client VPN connection between on premises and AWS. Deploy an Amazon Route 53 Resolver inbound endpoint in the VPC.

D.

Set up an AWS Direct Connect connection with a public VIF. Deploy an Amazon Route 53 Resolver inbound endpoint in the Region that is hosting the VPC. Use the IP address that is assigned to the endpoint for connectivity to the on-premises DNS servers.

Buy Now
Questions 8

A company has a VPC that includes application workloads that run on Amazon EC2 instances in a single AWS Region. The company wants to use AWS Local Zones to deploy an extension of the application workloads that run in the Region. The extended workloads in the Local Zone need to communicate bidirectionally with the workloads in the VPC in the Region.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create a new VPC in the Local Zone. Attach all the VPCs to a transit gateway. Configure routing for the transit gateway and the VPCs. Deploy instances in the new VPC.

B.

Deploy a third-party appliance in a new VPC in the Region. Create a new VPC in the Local Zone. Create VPN connections to the appliance for the VPCs. Deploy instances in the new VPC in the Local Zone.

C.

Create a new subnet in the Local Zone. Deploy a third-party appliance in the VPC with interfaces in each subnet. Configure the new subnet to route the Local Zone through the appliance. Deploy instances in the new subnet.

D.

Create a new subnet in the Local Zone. Configure the new subnet to use a CIDR block that is within the VPC’s CIDR block. Deploy instances in the new subnet in the Local Zone.

Buy Now
Questions 9

A network engineer needs to update a company's hybrid network to support IPv6 for the upcoming release of a new application. The application is hosted in a VPC in the AWS Cloud. The company's current AWS infrastructure includes VPCs that are connected by a transit gateway. The transit gateway is connected to the on-premises network by AWS Direct Connect and AWS Site-to-Site VPN. The company's on-premises devices have been updated to support the new IPv6 requirements.

The company has enabled IPv6 for the existing VPC by assigning a new IPv6 CIDR block to the VPC and by assigning IPv6 to the subnets for dual-stack support. The company has launched new Amazon EC2 instances for the new application in the updated subnets.

When updating the hybrid network to support IPv6 the network engineer must avoid making any changes to the current infrastructure. The network engineer also must block direct access to the instances' new IPv6 addresses from the internet. However, the network engineer must allow outbound internet access from the instances.

What is the MOST operationally efficient solution that meets these requirements?

Options:

A.

Update the Direct Connect transit VIF and configure BGP peering with the AWS assigned IPv6 peering address. Create a new VPN connection that supports IPv6 connectivity. Add an egress-only internet gateway. Update any affected VPC security groups and route tables to provide connectivity within the VPC and between the VPC and the on-premises devices

B.

Update the Direct Connect transit VIF and configure BGP peering with the AWS assigned IPv6 peering address. Update the existing VPN connection to support IPv6 connectivity. Add an egress-only internet gateway. Update any affected VPC security groups and route tables to provide connectivity within the VPC and between the VPC and the on-premises devices.

C.

Create a Direct Connect transit VIF and configure BGP peering with the AWS assigned IPv6 peering address. Create a new VPN connection that supports IPv6 connectivity. Add an egress-only internet gateway. Update any affected VPC security groups and route tables to provide connectivity within the VPC and between the VPC and the on-premises devices.

D.

Create a Direct Connect transit VIF and configure BGP peering with the AWS assigned IPv6 peering address. Create a new VPN connection that supports IPv6 connectivity. Add a NAT gateway. Update any affected VPC security groups and route tables to provide connectivity within the VPC and between the VPC and the on-premises devices.

Buy Now
Questions 10

A company uses an AWS Direct Connect private VIF with a link aggregation group (LAG) that consists of two 10 Gbps connections. The company's security team has implemented a new requirement for external network connections to provide layer 2 encryption. The company's network team plans to use MACsec support for Direct Connect to meet the new requirement.

Which combination of steps should the network team take to implement this functionality? (Choose three.)

Options:

A.

Create a new Direct Connect LAG with new circuits and ports that support MACsec.

B.

Associate the MACsec Connectivity Association Key (CAK) and the Connection Key Name (CKN) with the new LAG.

C.

Associate the Internet Key Exchange (IKE) with the existing LAG.

D.

Configure the MACsec encryption mode on the existing LAG.

E.

Configure the MACsec encryption mode on the new LAG.

F.

Configure the MACsec encryption mode on each Direct Connect connection that makes up the existing LAG.

Buy Now
Questions 11

An ecommerce company needs to Implement additional security controls on all its domain names that are hosted in Amazon Route 53. The company's new policy requires data authentication and data integrity verification for all queries to the company's domain names. The current Route 53 architecture has four public hosted zones.

A network engineer needs to implement DNS Security Extensions (DNSSEC) signing and validation on the hosted zones. The solution must include an alert capability.

Which combination of steps will meet these requirements? {Select THREE.)

Options:

A.

Enable DNSSEC signing for Route 53. Request that Route 53 create a Key-signing key (KSK) based on a customer managed key in AWS Key Management Service (AWS KMS).

B.

Enable DNSSEC signing for Route 53. Request that Route 53 create a zone-signing key (ZSK) based on a customer managed key in AWS Key Management Service (AWS KMS).

C.

Create a chain of trust for the hosted zones by adding a Delegation Signer (DS) record for each subdomain.

D.

Create a chain of trust for the hosted zones by adding a Delegation Signer (DS) record to the parent zone.

E.

Set up an Amazon CloudWatch alarm that provides an alert whenever aDNSSECInternalFailure error or DNSSECKeySigningKeysNeedingAction error is detected.

F.

Set up an AWS CloudTrail alarm that provides an alert whenever a DNSSECInternalFailure error or DNSSECKeySigningKeysNeedingAction error is detected.

Buy Now
Questions 12

A company’s network engineer is designing a hybrid DNS solution for an AWS Cloud workload. Individual teams want to manage their own DNS hostnames for their applications in their development environment. The solution must integrate the application-specific hostnames with the centrally managed DNS hostnames from the on-premises network and must provide bidirectional name resolution. The solution also must minimize management overhead.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

Options:

A.

Use an Amazon Route 53 Resolver inbound endpoint.

B.

Modify the DHCP options set by setting a custom DNS server value.

C.

Use an Amazon Route 53 Resolver outbound endpoint.

D.

Create DNS proxy servers.

E.

Create Amazon Route 53 private hosted zones.

F.

Set up a zone transfer between Amazon Route 53 and the on-premises DNS.

Buy Now
Questions 13

A company is building a new workload on AWS that uses an Application Load Balancer (ALB) The company has configured a new ALB target group that uses slow start mode. A team begins registering Amazon EC2 Instances as targets in the new target group. During testing, the team observes that the targets did not enter slow start mode.

What caused the targets to not enter slow start mode?

Options:

A.

The ALB configuration uses the round robin routing algorithm for traffic.

B.

The target group did not contain at least one healthy target configured in slow start mode.

C.

The target group must contain EC2 instances that are all the same instance type.

D.

The ALB configuration uses the 5-tuple criteria for traffic.

Buy Now
Questions 14

A company is using an Amazon CloudFront distribution that is configured with an Application Load Balancer (ALB) as an origin. A network engineer needs to implement a solution that requires

all inbound traffic to the ALB to come from CloudFront. The network engineer must implement the solution at the network layer rather than in the application.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:

A.

Add an inbound rule to the ALB's security group to allow the AWS managed prefix list for CloudFront.

B.

Add an inbound rule to the network ACLs that are associated with the ALB's subnets. Use the AWS managed prefix list for CloudFront as the source in the rule.

C.

Configure CloudFront to add a custom HTTP header to the requests that CloudFront sends to the ALB.

D.

Associate an AWS WAF web ACL with the ALB. Configure the AWS WAF rules to allow traffic from the CloudFront IP set. Automatically update the CloudFront IP set by using an AWS Lambda function.

Buy Now
Questions 15

A company is hosting an application on Amazon EC2 instances behind an Application Load Balancer. The instances are in an Amazon EC2 Auto Scaling group. Because of a recent change to a security group, external users cannot access the application.

A network engineer needs to prevent this downtime from happening again. The network engineer must implement a solution that remediates noncompliant changes to security groups.

Which solution will meet these requirements?

Options:

A.

Configure Amazon GuardDuty to detect inconsistencies between the desired security group configuration and the current security group configuration. Create an AWS Systems Manager Automation runbook to remediate noncompliant security groups.

B.

Configure an AWS Config rule to detect inconsistencies between the desired security group configuration and the current security group configuration. Configure AWS OpsWorks for Chef to remediate noncompliant security groups.

C.

Configure Amazon GuardDuty to detect inconsistencies between the desired security group configuration and the current security group configuration. Configure AWS OpsWorks for Chef to remediate noncompliant security groups.

D.

Configure an AWS Config rule to detect inconsistencies between the desired security group configuration and the current security group configuration. Create an AWS Systems Manager Automation runbook to remediate noncompliant security groups.

Buy Now
Questions 16

A company is hosting an application on Amazon EC2 instances behind a Network Load Balancer (NLB). A solutions architect added EC2 instances in a second Availability Zone to improve the availability of the application. The solutions architect added the instances to the NLB target group.

The company's operations team notices that traffic is being routed only to the instances in the first Availability Zone.

What is the MOST operationally efficient solution to resolve this issue?

Options:

A.

Enable the new Availability Zone on the NLB

B.

Create a new NLB for the instances in the second Availability Zone

C.

Enable proxy protocol on the NLB

D.

Create a new target group with the instances in both Availability Zones

Buy Now
Questions 17

A global delivery company is modernizing its fleet management system. The company has several business units. Each business unit designs and maintains applications that are hosted in its own AWS account in separate application VPCs in the same AWS Region. Each business unit's applications are designed to get data from a central shared services VPC.

The company wants the network connectivity architecture to provide granular security controls. The architecture also must be able to scale as more business units consume data from the central shared services VPC in the future.

Which solution will meet these requirements in the MOST secure manner?

Options:

A.

Create a central transit gateway. Create a VPC attachment to each application VPC. Provide full mesh connectivity between all the VPCs by using the transit gateway.

B.

Create VPC peering connections between the central shared services VPC and each application VPC in each business unit's AWS account.

C.

Create VPC endpoint services powered by AWS PrivateLink in the central shared services VPCreate VPC endpoints in each application VPC.

D.

Create a central transit VPC with a VPN appliance from AWS Marketplace. Create a VPN attachment from each VPC to the transit VPC. Provide full mesh connectivity among all the VPCs.

Buy Now
Questions 18

A company is using Amazon Route 53 Resolver DNS Firewall in a VPC to block all domains except domains that are on an approved list. The company is concerned that if DNS Firewall is unresponsive, resources in the VPC might be affected if the network cannot resolve any DNS queries. To maintain application service level agreements, the company needs DNS queries to continue to resolve even if Route 53 Resolver does not receive a response from DNS Firewall.

Which change should a network engineer implement to meet these requirements?

Options:

A.

Update the DNS Firewall VPC configuration to disable fail open for the VPC.

B.

Update the DNS Firewall VPC configuration to enable fail open for the VPC.

C.

Create a new DHCP options set with parameter dns_firewall_fail_open=false. Associate the new DHCP options set with the VPC.

D.

Create a new DHCP options set with parameter dns_firewall_fail_open=true. Associate the new DHCP options set with the VPC.

Buy Now
Questions 19

A company hosts a web application that runs on a fleet of Amazon EC2 instances behind an Application Load Balancer (ALB). The instances are in an Auto Scaling group. The company uses an Amazon CloudFront distribution with the ALB as an origin.

The application recently experienced an attack. In response, the company associated an AWS WAF web ACL with the CloudFront distribution. The company needs to use Amazon Athena to analyze application attacks that AWS WAF detects.

Which solution will meet this requirement?

Options:

A.

Configure the ALB and the EC2 instance subnets to produce VPC flow logs. Configure the VPC flow logs to deliver logs to an Amazon S3 bucket for log analysis.

B.

Create a trail in AWS CloudTrail to capture data events. Configure the trail to deliver logs to an Amazon S3 bucket for log analysis.

C.

Configure the AWS WAF web ACL to deliver logs to an Amazon Kinesis Data Firehose delivery stream. Configure the stream to deliver the data to an Amazon S3 bucket for log analysis.

D.

Turn on access logging for the ALB. Configure the access logs to deliver the logs to an Amazon S3 bucket for log analysis.

Buy Now
Questions 20

An IoT company collects data from thousands of sensors that are deployed in the Unites States and South Asia. The sensors use a proprietary communication protocol that is built on UDP to send the data to a fleet of Amazon EC2 instances. The instances are in an Auto Scaling group and run behind a Network Load Balancer (NLB). The instances, Auto Scaling group, and NLB are deployed in the us-west-2 Region.

Occasionally, the data from the sensors in South Asia gets lost in transit over the internet and does not reach the EC2 instances.

Which solutions will resolve this issue? (Choose two.)

Options:

A.

Use AWS Global Accelerator with the existing NLB.

B.

Create an Amazon CloudFront distribution. Specify the existing NLB as the origin.

C.

Create a second deployment of the EC2 instances and the NLB in the ap-south-1 Region. Use an Amazon Route 53 latency routing policy to resolve to the Region that provides the least latency.

D.

Create a second deployment of the EC2 instances and the NLB in the ap-south-1 Region. Use an Amazon Route 53 failover routing policy to resolve to an alternate Region in case packets are dropped.

E.

Turn on enhanced networking on the EC2 instances by using the most recent Elastic Network Adapter (ENA) drivers.

Buy Now
Questions 21

A company needs to manage Amazon EC2 instances through command line interfaces for Linux hosts and Windows hosts. The EC2 instances are deployed in an environment in which there is

no route to the internet. The company must implement role-based access control for management of the instances. The company has a standalone on-premises environment.

Which approach will meet these requirements with the LEAST maintenance overhead?

Options:

A.

Set up an AWS Direct Connect connection between the on-premises environment and the VPC where the instances are deployed. Configure routing, security groups, and ACLs.

Connect to the instances by using the Direct Connect connection.

B.

Deploy and configure AWS Systems Manager Agent (SSM Agent) on each instance. Deploy VPC endpoints for Systems Manager Session Manager. Connect to the instances by

using Session Manager.

C.

Establish an AWS Site-to-Site VPN connection between the on-premises environment and the VPC where the instances are deployed. Configure routing, security groups, and

ACLs. Connect to the instances by using the Site-to-Site VPN connection.

D.

Deploy an appliance to the VPC where the instances are deployed. Assign a public IP address to the appliance. Configure security groups and ACLs. Connect to the instances by

using the appliance as an intermediary.

Buy Now
Questions 22

A network engineer configures a second AWS Direct Connect connection to an existing network. The network engineer runs a test in the AWS Direct Connect Resiliency Toolkit on the connections. The test produces a failure. During the failover event, the network engineer observes a 90-second interruption before traffic shifts to the failover connection.

Which solution will reduce the time for failover?

Options:

A.

Decrease the BGP hello timer to 5 seconds.

B.

Add a VPN connection to the connectivity solution. Implement fast failover.

C.

Configure Bidirectional Forwarding Detection (BFD) on the on-premises router.

D.

Decrease the BGP hold-down timer to 5 seconds.

Buy Now
Questions 23

A real estate company is using Amazon Workspaces to provide corporate managed desktop service to its real estate agents around the world. These Workspaces are deployed in seven VPCs. Each VPC is in a different AWS Region.

According to a new requirement, the company’s cloud-hosted security information and events management (SIEM) system needs to analyze DNS queries generated by the Workspaces to identify the target domains that are connected to the Workspaces. The SIEM system supports poll and push methods for data and log collection.

Which solution should a network engineer implement to meet these requirements MOST cost-effectively?

Options:

A.

Create VPC flow logs in each VPC that is connected to the Workspaces instances. Publish the log data to a central Amazon S3 bucket. Configure the SIEM system to poll the S3 bucket periodically.

B.

Configure an Amazon CloudWatch agent to log all DNS requests in Amazon CloudWatch Logs. Configure a subscription filter in CloudWatch Logs. Push the logs to theSIEM system by using Amazon Kinesis Data Firehose.

C.

Configure VPC Traffic Mirroring to copy network traffic from each Workspace and to send the traffic to the SIEM system probes for analysis.

D.

Configure Amazon Route 53 query logging. Set the destination as an Amazon Kinesis Data Firehose delivery stream that is configured to push data to the SIEM system.

Buy Now
Questions 24

A company's AWS infrastructure is spread across more than 50 accounts and across five AWS Regions. The company needs to manage its security posture with simplified administration and maintenance for all the AWS accounts. The company wants to use AWS Firewall Manager to manage the firewall rules and requirements.

The company creates an organization with all features enabled in AWS Organizations.

Which combination of steps should the company take next to meet the requirements? (Select THREE.)

Options:

A.

Configure only the Firewall Manager administrator account to join the organization.

B.

Configure all the accounts to join the organization.

C.

Set an account as the Firewall Manager administrator account.

D.

Set an account as the Firewall Manager child account.

E.

Set up AWS Config for all the accounts and all the Regions where the company has resources.

F.

Set up AWS Config for only the organization's management account.

Buy Now
Questions 25

A company deploys an internal website behind an Application Load Balancer (ALB) in a VPC. The VPC has a CIDR block of 172.31.0.0/16. The company creates a private hosted zone for the domain example.com for the website in Amazon Route 53. The company establishes an AWS Site-to-Site VPN connection between its office network and the VPC.

A network engineer needs to set up a DNS solution so that employees can visit the internal webpage by accessing a private domain URL (https://example.com) from the office network.

Which combination of steps will meet this requirement? (Choose two.)

Options:

A.

Create an alias record that points to the ALB in the Route 53 private hosted zone.

B.

Create a CNAME record that points to the ALB internal domain in the Route 53 private hosted zone.

C.

Create a Route 53 Resolver inbound endpoint. On the office DNS server, configure a conditional forwarder to forward the DNS queries to the Route 53 Resolver inbound endpoint.

D.

Create a Route 53 Resolver outbound endpoint. On the office DNS server, configure a conditional forwarder to forward the DNS queries to the Route 53 Resolver outbound endpoint.

E.

On the office DNS server, configure a conditional forwarder for the private domain to the VPC DNS at 172.31.0.2.

Buy Now
Questions 26

A network engineer needs to provide dual-stack connectivity between a company's office location and an AWS account. The company's on-premises router supports dual-stack connectivity, and the VPC has been configured with dual-stack support. The company has set up two AWS Direct Connect connections to the office location. This connectivity must be highly available and must be reliable for latency-sensitive traffic.

Which solutions will meet these requirements? (Choose two.)

Options:

A.

Configure a single private VIF on each Direct Connect connection. Add both IPv4 and IPv6 peering to each private VIF. Configure the on- premises equipment with the AWS provided BGP neighbors to advertise IPv4 routes on the IPv4 peering and IPv6 routes on the IPv6 peering. Enable Bidirectional Forwarding Detection (BFD) on all peering sessions.

B.

Configure two private VIFs on each Direct Connect connection: one private VIF with the IPv4 address family and one private VIF with the IPv6 address family. Configure the on-premises equipment with the AWS provided BGP neighbors to advertise IPv4 routes on the IPv4 peering and IPv6 routes on the IPv6 peering. Enable Bidirectional Forwarding Detection (BFD) on all peering sessions.

C.

Configure a single private VIF and IPv4 peering on each Direct Connect connection. Configure the on-premises equipment with this peering to advertise the IPv6 routes in the same BGP neighbor configuration. Enable Bidirectional Forwarding Detection (BFD) on all peering sessions.

D.

Configure two private VIFs on each Direct Connect connection: one private VIF with the IPv4 address family and one private VIF with the IPv6 address family. Configure the on-premises equipment with the AWS provided BGP neighbors to advertise all IPv4 routes and IPv6 routes on all peering sessions. Keep the Bidirectional Forwarding Detection (BFD) configuration unchanged.

E.

Configure two private VIFs on each Direct Connect connection: one private VIF with the IPv4 address family and one private VIF with the IPv6 address family. Configure the on-premises equipment with the AWS provided BGP neighbors to advertise IPv4 routes on the IPv4 peering and IPv6 routes on the IPv6 peering. Reduce the BGP hello timer to 5 seconds on both the on-premises equipment and the Direct Connect configuration.

Buy Now
Questions 27

A company is planning to migrate to AWS and use multiple VPCs in multiple AWS Regions. A network engineer must connect the eu-west-1 and eu-central-1 Regions to the company headquarters and branch office, respectively.

The network engineer created a production VPC, named Prod A, with a CIDR block of 10.0.0.0/16. Prod A runs in an account in eu-west-1. The network engineer then created another production VPC, named Prod B, with a CIDR block of 10.1.0.0/16. Prod В runs in a different account in eu-central-1.

The network engineer performed the following steps to try to achieve the required connectivity:

1. Created one transit gateway in each Region

2. Shared and accepted the transit gateways with the production accounts in both Regions

3. Configured the peering attachment between both transit gateways

4. Attached both VPCs to the respective Region transit gateway

5. Created both transit gateway route tables and associated the attachments with the route tables

6. Configured a static route in both transit gateway route tables to send traffic to the remote VPC in the other Region

7. Activated route propagation on the VPC route tables in each Region

After the configuration, the network engineer tried to connect from Prod A to Prod B. However, the connection was unsuccessful.

What should the network engineer do to achieve the required connectivity?

Options:

A.

Modify the IP address of the peering attachment to a wider range.

B.

Delete the static routes that were in the transit gateway route table to send traffic to the remote VPC and enable route propagation instead.

C.

Create a new route destined to 10.0.0.0/8 in both production VPC route tables with the Region transit gateway as the target.

D.

Modify the transit gateway route tables from the production accounts to propagate routes dynamically between the production VPCs.

Buy Now
Questions 28

A network engineer is evaluating a network setup for a global retail company. The company has an AWS Direct Connect connection between its on-premises data center and the AWS Cloud. The company has AWS resources in the eu-west-2 Region. These resources consist of multiple VPCs that are attached to a transit gateway.

The company recently provisioned a few AWS resources in the eu-central-1. Region in a single VPC close to its users in this area. The network engineer must connect the resources in eu-central-1 with the on-premises data center and the resources in eu-west-2. The solution must minimize changes to the Direct Connect connection.

What should the network engineer do to meet these requirements?

Options:

A.

Create a new virtual private gateway. Attach the new virtual private gateway to the VPC in eu-central-1. Use a transit VIF to connect the VPC and the Direct Connect router.

B.

Create a new transit gateway in eu-central-1. Create a peering attachment request to the transit gateway in eu-west-2. Add a static route in the transit gateway route table in eu-central-1 to point to the transit gateway peering attachment. Accept the peering request. Add a static route in the transit gateway route table in eu-west-2 to point to the new transit gateway peering attachment.

C.

Create a new transit gateway in eu-central-1. Use an AWS Site-to-Site VPN connection to peer both transit gateways. Add a static route in the transit gateway route table in eu-central-1 to point to the transit gateway VPN attachment. Add a static route in the transit gateway route table in eu-west-2 to point to the new transit gateway peering attachment.

D.

Create a new virtual private gateway. Attach the new virtual private gateway to the VPC in eu-central-1. Use a public VIF to connect the VPC and the Direct Connect router.

Buy Now
Questions 29

A network engineer must develop an AWS CloudFormation template that can create a virtual private gateway, a customer gateway, a VPN connection, and static routes in a route table. During testing of the template, the network engineer notes that the CloudFormation template has encountered an error and is rolling back.

What should the network engineer do to resolve the error?

Options:

A.

Change the order of resource creation in the CloudFormation template.

B.

Add the DependsOn attribute to the resource declaration for the virtual private gateway. Specify the route table entry resource.

C.

Add a wait condition in the template to wait for the creation of the virtual private gateway.

D.

Add the DependsOn attribute to the resource declaration for the route table entry. Specify the virtual private gateway resource.

Buy Now
Questions 30

A company has a VPC in the AWS Cloud. The company recently acquired a competitor that also has a VPC in the AWS Cloud. A network engineer discovers an IP address overlap between the two VPCs. Both VPCs require access to an AWS Marketplace partner service.

Which solution will ensure interoperability among the VPC hosted services and the AWS Marketplace partner service?

Options:

A.

Configure VPC peering with static routing between the VPCs. Configure an AWS Site-to-Site VPN connection with static routing to the partner service.

B.

Configure a NAT gateway in the VPCs. Configure default routes in each VPC to point to the local NAT gateway. Attach each NAT gateway to a transit gateway. Configure an AWS Site-to-Site VPN connection with static routing to the partner service.

C.

Configure AWS PrivateLink to facilitate connectivity between the VPCs and the partner service. Use the DNS name that is created with the associated interface endpoints to route traffic between the VPCs and the partner service.

D.

Configure a NAT instance in the VPCs. Configure default routes in each VPC to point to the local NAT instance. Configure an interface endpoint in each VPC to connect to the partner service. Use the DNS name that is created with the associated interface endpoints to route traffic between the VPCs and the partner service.

Buy Now
Questions 31

A company wants to improve visibility into its AWS environment. The AWS environment consists of multiple VPCs that are connected to a transit gateway. The transit gateway connects to an on-premises data center through an AWS Direct Connect gateway and a pair of redundant Direct Connect connections that use transit VIFs. The company must receive notification each time a new route is advertised to AWS from on premises over Direct Connect.

What should a network engineer do to meet these requirements?

Options:

A.

Enable Amazon CloudWatch metrics on Direct Connect to track the received routes. Configure a CloudWatch alarm to send notifications when routes change.

B.

Onboard Transit Gateway Network Manager to Amazon CloudWatch Logs Insights. Use Amazon EventBridge (Amazon CloudWatch Events) to send notifications when routes change.

C.

Configure an AWS Lambda function to periodically check the routes on the Direct Connect gateway and to send notifications when routes change.

D.

Enable Amazon CloudWatch Logs on the transit VIFs to track the received routes. Create a metric filter Set an alarm on the filter to send notifications when routes change.

Buy Now
Questions 32

Two companies are merging. The companies have a large AWS presence with multiple VPCs and are designing connectivity between their AWS networks. Both companies are using AWS Direct Connect with a Direct Connect gateway. Each company also has a transit gateway and multiple AWS Site-to-Site VPN connections from its transit gateway to on-premises resources. The new solution must optimize network visibility, throughput, logging, and monitoring.

Which solution will meet these requirements?

Options:

A.

Configure a Site-to-Site VPN connection between each company's transit gateway to establish reachability between the respective networks. Configure VPC Flow Logs for all VPCs. Publish the flow logs to Amazon CloudWatch. Use VPC Reachability Analyzer to monitor connectivity.

B.

Configure a Site-to-Site VPN connection between each company's transit gateway to establish reachability between the respective networks. Configure VPC Flow Logs for all VPCs. Publish the flow logs to Amazon CloudWatch. Use AWS Transit Gateway Network Manager to monitor the transit gateways and their respective connections.

C.

Configure transit gateway peering between each company's transit gateway Configure VPC Flow Logs for all VPCs. Publish the flow logs to Amazon CloudWatch. Use VPC Reachability Analyzer to monitor connectivity.

D.

Configure transit gateway peering between each company's transit gateway. Configure VPC Flow Logs for all VPCs. Publish the flow logs to Amazon CloudWatch. Use AWS Transit Gateway Network Manager to monitor the transit gateways, their respective connections, and the transit gateway peering link.

Buy Now
Questions 33

A company hosts infrastructure services in multiple VPCs across multiple accounts in the us-west-2 Region. The VPC CIDR blocks do not overlap. The company wants to connect the VPCs to its data centers by using AWS Site-to-Site VPN tunnels.

The connections must be encrypted in transit. Additionally, the connection from each data center must route to the closest AWS edge location. The connections must be highly available and must accommodate automatic failover.

Which solution will meet these requirements?

Options:

A.

Deploy a transit gateway. Share the transit gateway with each of the other accounts by using AWS Resource Access Manager (AWS RAM). Create VPC attachments to the transit gateway from each service account. Add routes to the on-premises subnet in each of the service VPC route tables by using the attachment as the gateway. Create Site-to-Site VPN tunnel attachments with dynamic routing to the transit gateway. Enable the acceleration feature fo

B.

Deploy VPN gateways to each account. Enable the acceleration feature for VPN gateways on each account. Add routes to the on-premises subnet in each of the service VPC route tables. Use the VPNs as the gateway. Configure the VPN tunnels on the on-premises equipment. Configure BGP peering.

C.

Deploy a transit gateway. Share the transit gateway with each of the other accounts by using AWS Resource Access Manager (AWS RAM). Create VPC attachments to the transit gateway from each service account. Add routes to the on-premises subnet in each of the service VPC route tables by using the attachment as the gateway. Create Site-to-Site VPN tunnel attachments with dynamic routing to the transit gateway. Enable the acceleration feature fo

D.

Deploy VPN gateways to each account. Enable the acceleration feature for VPN gateways on each account. Add routes to the on-premises subnet in each of the service VPC route tables. Use the VPNs as the gateway. Configure the VPN tunnels on the on-premises equipment. Configure static routing.

Buy Now
Questions 34

A company has an AWS Site-to-Site VPN connection between its existing VPC and on-premises network. The default DHCP options set is associated with the VPC. The company has an application that is running on an Amazon Linux 2 Amazon EC2 instance in the VPC. The application must retrieve an Amazon RDS database secret that is stored in AWS Secrets Manager through a private VPC endpoint. An on-premises application provides internal RESTful API service that can be reached by URL (https://api.example.internal). Two on-premises Windows DNS servers provide internal DNS resolution.

The application on the EC2 instance needs to call the internal API service that is deployed in the on-premises environment. When the application on the EC2 instance attempts to call the internal API service by referring to the hostname that is assigned to the service, the call fails. When a network engineer tests the API service call from the same EC2 instance by using the API service's IP address, the call is successful.

What should the network engineer do to resolve this issue and prevent the same problem from affecting other resources in the VPC?

Options:

A.

Create a new DHCP options set that specifies the on-premises Windows DNS servers. Associate the new DHCP options set with the existing VPC. Reboot the Amazon Linux 2 EC2 instance.

B.

Create an Amazon Route 53 Resolver rule. Associate the rule with the VPC. Configure the rule to forward DNS queries to the on-premises Windows DNS servers if the domain name matches example.internal.

C.

Modify the local host file in the Amazon Linux 2 EC2 instance in the VPMap the service domain name (api.example.internal) to the IP address of the internal API service.

D.

Modify the local /etc/resolv.conf file in the Amazon Linux 2 EC2 instance in the VPC. Change the IP addresses of the name servers in the file to the IP addresses of the company's on-premisesWindows DNS servers.

Buy Now
Questions 35

A company is developing a new application that is deployed in multiple VPCs across multiple AWS Regions. The VPCs are connected through AWS Transit Gateway. The VPCs contain private subnets and public subnets.

All outbound internet traffic in the private subnets must be audited and logged. The company's network engineer plans to use AWS Network Firewall and must ensure that all traffic through Network Firewall is completely logged for auditing and alerting.

How should the network engineer configure Network Firewall logging to meet these requirements?

Options:

A.

Configure Network Firewall logging in Amazon CloudWatch to capture all alerts. Send the logs to a log group in Amazon CloudWatch Logs.

B.

Configure Network Firewall logging in Network Firewall to capture all alerts and flow logs.

C.

Configure Network Firewall logging by configuring VPC Flow Logs for the firewall endpoint. Send the logs to a log group in Amazon CloudWatch Logs.

D.

Configure Network Firewall logging by configuring AWS CloudTrail to capture data events.

Buy Now
Questions 36

A company has set up a NAT gateway in a single Availability Zone (AZ1) in a VPC (VPC1) to access the internet from Amazon EC2 workloads in the VPC. The EC2 workloads are running in private subnets in three Availability Zones (AZ1, AZ2, AZ3). The route table for each subnet is configured to use the NAT gateway to access the internet.

Recently during an outage, internet access stopped working for the EC2 workloads because of the NAT gateway's unavailability. A network engineer must implement a solution to remove the single point of failure from the architecture and provide built-in redundancy.

Which solution will meet these requirements?

Options:

A.

Set up two NAT gateways. Place each NAT gateway in a different public subnet in separate Availability Zones (AZ2 and AZ3). Configure a route table for private subnets to route traffic to the virtual IP addresses of the two NAT gateways.

B.

Set up two NAT gateways. Place each NAT gateway in a different public subnet in separate Availability Zones (AZ2 and AZ3). Configure a route table to point the AZ2 private subnets to the NAT gateway in AZ2. Configure the same route table to point the AZ3 private subnets to the NAT gateway in AZ3.

C.

Create a second VPC (VPC2). Set up two NAT gateways. Place each NAT gateway in a different VPC (VPC1 and VPC2) and in the same Availability Zone (AZ2). Configure a route table in VPC1 to point the AZ2 private subnets to one NAT gateway. Configure a route table in VPC2 to point the AZ2 private subnets to the second NAT gateway.

D.

Set up two NAT gateways. Place each NAT gateway in a different public subnet in separate Availability Zones (AZ2 and AZ3). Configure a route table to point the AZ2 private subnets to the NAT gateway in AZ2. Configure a second route table to point the AZ3 private subnets to the NAT gateway in AZ3.

Buy Now
Questions 37

A company has an AWS environment that includes multiple VPCs that are connected by a transit gateway. The company wants to use a certificate-based AWS Site-to-Site VPN connection to establish connectivity between an on-premises environment and the AWS environment. The company does not have a static public IP address for the on-premises environment.

Which combination of steps should the company take to establish VPN connectivity between the transit gateway and the on-premises environment? (Choose two.)

Options:

A.

Create a public certificate in AWS Certificate Manager (ACM).

B.

Create a private certificate in AWS Certificate Manager (ACM).

C.

Configure the Site-to-Site VPN tunnels to use the pre-shared key (PSK).

D.

Create a customer gateway. Specify the current dynamic IP address of the customer gateway device's external interface.

E.

Create a customer gateway. Do not specify the IP address of the customer gateway device.

Buy Now
Questions 38

A network engineer is working on a large migration effort from an on-premises data center to an AWS Control Tower based multi-account environment. The environment

has a transit gateway that is deployed to a central network services account. The central network services account has been shared with an organization in AWS

Organizations through AWS Resource Access Manager (AWS RAM).

A shared services account also exists in the environment. The shared services account hosts workloads that need to be shared with the entire organization.

The network engineer needs to create a solution to automate the deployment of common network components across the environment. The solution must provision a

VPC for application workloads to each new and existing member account. The VPCs must be connected to the transit gateway in the central network services account.

Which combination of steps will meet these requirements with the LEAST operational overhead? (Select THREE.)

Options:

A.

Deploy an AWS Lambda function to the shared services account. Program the Lambda function to assume a role in the new and existing member accounts

to provision the necessary network infrastructure.

B.

Update the existing accounts with an Account Factory Customization (AFC). Select the same AFC when provisioning new accounts.

C.

Create an AWS CloudFormation template that describes the infrastructure that needs to be created in each account. Upload the template as an AWS

Service Catalog product to the shared services account.

D.

Deploy an Amazon EventBridge rule on a default event bus in the shared services account. Configure the EventBridge rule to react to AWS Control Tower

CreateManagedAccount lifecycle events and to invoke the AWS Lambda function.

E.

Create an AWSControlTowerBlueprintAccess role in the shared services account.

F.

Create an AWSControlTowerBlueprintAccess role in each member account.

Buy Now
Questions 39

A company has configured an AWS Cloud WAN core network with edge locations in the us-east-1 Region and the us-west-1 Region. Each edge location has two segments: development and staging. The segments use the default core network policy.

The company has attached VPCs to the core network. A development VPC is attached to the development segment in us-east-1 and is configured to use the 10.0.0.0/16 CIDR block. A staging VPC is attached to the staging segment in us-west-1 and is configured to use the 10.5.0.0/16 CIDR block. The company has updated the route tables for both VPCs with a route that directs any traffic for 0.0.0.0/0 to the core network.

The company’s network team needs to establish communication between the two VPCs by using the AWS Cloud WAN core network. The network team is not receiving a response during tests of communication between the VPCs. The network team has verified that security groups and network ACLs are not blocking the traffic.

What should the network team do to establish this communication?

Options:

A.

Update both VPC route tables to have a new static route. Configure a route on the development VPC to direct the traffic for 10.0.0.0/16 to the development VPC attachment. Configure a route on the staging VPC to direct the traffic for 10.5.0.0/16 to the staging VPC attachment.

B.

Update the segment filter to allow traffic on the development and staging segments.

C.

Set the isolate-attachments parameter to False for the development and staging segments.

D.

Update the core network policy to add a static route for each segment. Configure a route to direct the traffic for 10.0.0.0/16 to the development VPC attachment. Configure a route to direct the traffic for 10.5.0.0/16 to the staging VPC attachment.

Buy Now
Questions 40

A global company runs business applications in the us-east-1 Region inside a VPC. One of the company's regional offices in London uses a virtual private gateway for an AWS Site-to-Site VPN connection tom the VPC. The company has configured a transit gateway and has set up peering between the VPC and other VPCs that various departments in the company use.

Employees at the London office are experiencing latency issues when they connect to the business applications.

What should a network engineer do to reduce this latency?

Options:

A.

Create a new Site-to-Site VPN connection. Set the transit gateway as the target gateway. Enable acceleration on the new Site-to-Site VPN connection. Update the VPN device in the London office with the new connection details.

B.

Modify the existing Site-to-Site VPN connection by setting the transit gateway as the target gateway. Enable acceleration on the existing Site-to-Site VPN connection.

C.

Create a new transit gateway in the eu-west-2 (London) Region. Peer the new transit gateway with the existing transit gateway. Modify the existing Site-to-Site VPN connection by setting the new transit gateway as the target gateway.

D.

Create a new AWS Global Accelerator standard accelerator that has an endpoint of the Site-to-Site VPN connection. Update the VPN device in the London office with the new connection details.

Buy Now
Questions 41

A media company is implementing a news website for a global audience. The website uses Amazon CloudFront as its content delivery network. The backend runs on Amazon EC2 Windows instances behind an Application Load Balancer (ALB). The instances are part of an Auto Scaling group. The company's customers access the website by using service example com as the CloudFront custom domain name. The CloudFront origin points to an ALB that uses service-alb.example.com as the domain name.

The company’s security policy requires the traffic to be encrypted in transit at all times between the users and the backend.

Which combination of changes must the company make to meet this security requirement? (Choose three.)

Options:

A.

Create a self-signed certificate for service.example.com. Import the certificate into AWS Certificate Manager (ACM). Configure CloudFront to use this imported SSL/TLS certificate. Change the default behavior to redirect HTTP to HTTPS.

B.

Create a certificate for service.example.com by using AWS Certificate Manager (ACM). Configure CloudFront to use this custom SSL/TLS certificate. Change the default behavior to redirect HTTP to HTTPS.

C.

Create a certificate with any domain name by using AWS Certificate Manager (ACM) for the EC2 instances. Configure the backend to use this certificate for its HTTPS listener. Specify the instance target type during the creation of a new target group that uses the HTTPS protocol for its targets. Attach the existing Auto Scaling group to this new target group.

D.

Create a public certificate from a third-party certificate provider with any domain name for the EC2 instances. Configure the backend to use this certificate for its HTTPS listener. Specify the instance target type during the creation of a new target group that uses the HTTPS protocol for its targets. Attach the existing Auto Scaling group to this new target group.

E.

Create a certificate for service-alb.example.com by using AWS Certificate Manager (ACM). Onthe ALB add a new HTTPS listener that uses the new target group and the service-alb.example.com ACM certificate. Modify the CloudFront origin to use the HTTPS protocol only. Delete the HTTP listener on the ALB.

F.

Create a self-signed certificate for service-alb.example.com. Import the certificate into AWS Certificate Manager (ACM). On the ALB add a new HTTPS listener that uses the new target group and the imported service-alb.example.com ACM certificate. Modify the CloudFront origin to use the HTTPS protocol only. Delete the HTTP listener on the ALB.

Buy Now
Questions 42

A company uses the us-east-1 Region and the ap-south-1 Region for its business units (BUs). The BUs are named BU-1 and BU-2. For each BU. there are two VPCs in us-east-1 and one VPC in ap-south-1.

Because of workload isolation requirements, resources can communicate within the same BU but cannot communicate with resources in the other BU. The company plans to add more BUs and plans to expand into more Regions.

Which solution will meet these requirements with the MOST operational efficiency?

Options:

A.

Configure an AWS Cloud WAN network that operates in the required Regions Attach all BU VPCs to the AWS Cloud WAN core network. Update the AWS Cloud WAN segment actions to configure new routes to deny traffic between the different BU segments.

B.

Configure a transit gateway in each Region. Configure peering between the transit gateways. Attach the BU VPCs to the transit gateway in the corresponding Region. Configure the transit gateway and VPC route tables to isolate traffic between BU VPCs.

C.

Configure an AWS Cloud WAN network that operates in the required Regions. Attach all BU VPCs to the AWS Cloud WAN core network. Update the core network policy by setting the isolate-attachments parameter for each segment.

D.

Configure an AWS Cloud WAN network that operates in the required Regions. Create AWS Cloud WAN segments for each BU. Configure VPC attachments for each BU's VPCs to the corresponding BU segment.

Buy Now
Questions 43

A company is using an AWS Site-to-Site VPN connection from the company's on-premises data center to a virtual private gateway in the AWS Cloud Because of congestion, the company is experiencing availability and performance issues as traffic travels across the internet before the traffic reaches AWS. A network engineer must reduce these issues for the connection as quickly as possible with minimum administration effort.

Which solution will meet these requirements?

Options:

A.

Edit the existing Site-to-Site VPN connection by enabling acceleration. Stop and start the VPN service on the customer gateway for the new setting to take effect.

B.

Configure a transit gateway in the same AWS Region as the existing virtual private gateway. Create a new accelerated Site-to-Site VPN connection. Connect the new connection to the transit gateway by using a VPN attachment. Update the customer gateway device to use the new Site to Site VPN connection. Delete the existing Site-to-Site VPN connection

C.

Create a new accelerated Site-to-Site VPN connection. Connect the new Site-to-Site VPN connection to the existing virtual private gateway. Update the customer gateway device to use the new Site-to-Site VPN connection. Delete the existing Site-to-Site VPN connection.

D.

Create a new AWS Direct Connect connection with a private VIF between the on-premises data center and the AWS Cloud. Update the customer gateway device to use the new Direct Connect connection. Delete the existing Site-to-Site VPN connection.

Buy Now
Questions 44

A company has a highly available application that is hosted in multiple VPCs and in two on-premises data centers. All the VPCs reside in the same AWS Region. All the VPCs require access to each other and to the on-premises data centers for the transfer of files that are multiple gigabytes in size.

A network engineer is designing an AWS Direct Connect solution to connect the on-premises data centers to each VPC.

Which architecture will meet the company's requirements with the LEAST operational overhead?

Options:

A.

Configure a virtual private gateway and a private VIF in each VPC in the Region. Configure a Direct Connect gateway. Associate the VIF of every VPC with the Direct Connect gateway. Create a new private VIF that connects the Direct Connect gateway to each on-premises data center. Configure the new private VIF to exchange BGP routes with the on-premises data centers and to have an MTU of 9001. Use VPC peering between each VPC. Configure stati

B.

Configure a virtual private gateway and a private VIF in each VPC in the Region. Configure a Direct Connect gateway. Associate the VIF of every VPC with the Direct Connect gateway. Create a new private VIF that connects the Direct Connect gateway to each on-premises data center. Configure the new private VIF to exchange BGP routes with the on-premises data centers and to have an MTU of 8500. Use VPC peering between each VPC. Configure stati

C.

Configure a transit gateway in the same Region of each VPC. Attach each VPC to thetransit gateway. Configure a Direct Connect gateway. Associate the Direct Connect gateway with the transit gateway. Associate a new transit VIF with each Direct Connect connection. Configure the new transit VIF to exchange BGP routes and to have an MTU of 9001. Configure route propagation between each VPC and the transit gateway.

D.

Configure a transit gateway in the same Region of each VPC. Attach each VPC to the transit gateway. Configure a Direct Connect gateway. Associate the Direct Connect gateway with the transit gateway. Associate a new transit VIF with each Direct Connect connection. Configure the new transit VIF to exchange BGP routes and to have an MTU of 8500. Configure route propagation between each VPC and the transit gateway.

Buy Now
Questions 45

A company is deploying AWS Cloud WAN with edge locations in the us-east-1 Region and the ap-southeast-2 Region. Individual AWS Cloud WAN segments are configured for the development environment, the production environment, and the shared services environment at each edge location. Many new VPCs will be deployed for the environments and will be configured as attachments to the AWS Cloud WAN core network.

The company's network team wants to ensure that VPC attachments are configured for the correct segment. The network team will tag the VPC attachments by using the Environment key with a value of the corresponding environment segment name. The segment for the production environment in us-east-1 must require acceptance for attachment requests. AH other attachment requests must not require acceptance.

Which solution will meet these requirements?

Options:

A.

Create a rule with a number of 100 that requires acceptance for attachments to the production segment. In the rule, set the condition logic to the "or" value. Include conditions that require a tag:Environment value of Production or a Region value of us-east-1. Create a rule with a number of 200 that does not require acceptance to map any tag:Environment values to their respective segments.

B.

Create a rule with a number of 100 that requires acceptance for attachments to the production segment. In the rule, set the condition logic to the "and" value. Include conditions that require a tag:Environment value of Production and a Region value of us-east-1. Create a rule with a number of 200 that does not require acceptance to map any tag:Environment values to their respective segments.

C.

Create a rule with a number of 100 that does not require acceptance to map any tag:Environment values to their respective segments. Create a rule with a number of 200 that requires acceptance for attachments to the production segment. In the rule, set the condition logic to the "and" value. Include conditions that require a tag:Environment value of Production and a Region value of us-east-1.

D.

Create a rule with a number of 100 that does not require acceptance to map any tag:Environment values to their respective segments Create a rule with a number of 200 that requires acceptance for attachments to the production segment. In the rule, set the condition logic to the "or value. Include conditions that require a tag:Environment value of Production or a Region value of us-east-1.

Buy Now
Questions 46

A company hosts application servers on premises and on Amazon EC2 instances in a VPC. The application servers access data that is hosted in an Amazon S3 bucket through the public internet. The EC2 instances in the VPC use an AWS Site-to-Site VPN for connectivity with the on-premises application servers.

New company regulations state that all traffic between the application servers and the S3 bucket must remain private and must not use public IP addresses.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Configure an S3 gateway endpoint Modify the route table with the appropriate route for the endpoint. Access the S3 bucket through the gateway endpoint from the EC2 instances.

B.

Configure an S3 interface endpoint. Update the on-premises servers and EC2 instances to use the interface endpoint DNS name to access the S3 bucket.

C.

Configure an S3 interface endpoint. Update the on-premises servers to use the interface endpoint DNS name to access the S3 bucket. Configure an S3 gateway endpoint. Modify the route table so that the EC2 instances use the gateway endpoint.

D.

Configure an S3 gateway endpoint. Modify the route table with the appropriate route for the endpoint. Use an S3 bucket policy to restrict access to the gateway endpoint. Configure a proxy server fleet behind a Network Load Balancer in the VPC so that the on-premises servers can access the S3 bucket.

Buy Now
Questions 47

A software company offers a software-as-a-service (SaaS) accounting application that is hosted in the AWS Cloud The application requires connectivity to the company's on-premises network. The company has two redundant 10 GB AWS Direct Connect connections between AWS and its on-premises network to accommodate the growing demand for the application.

The company already has encryption between its on-premises network and the colocation. The company needs to encrypt traffic between AWS and the edge routers in the colocation within the next few months. The company must maintain its current bandwidth.

What should a network engineer do to meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a new public VIF with encryption on the existing Direct Connect connections. Reroute traffic through the new public VIF.

B.

Create a virtual private gateway Deploy new AWS Site-to-Site VPN connections from on premises to the virtual private gateway Reroute traffic from the Direct Connect private VIF to the new VPNs.

C.

Deploy a new pair of 10 GB Direct Connect connections with MACsec. Configure MACsec on the edge routers. Reroute traffic to the new Direct Connect connections. Decommission the original Direct Connect connections

D.

Deploy a new pair of 10 GB Direct Connect connections with MACsec. Deploy a new public VIF on the new Direct Connect connections. Deploy two AWS Site-to-Site VPN connections on top of the new public VIF. Reroute traffic from the existing private VIF to the new Site-to-Site connections. Decommission the original Direct Connect connections.

Buy Now
Questions 48

A company is planning to use an AWS Transit Gateway hub and spoke architecture to migrate to AWS. The current on-premises multi-protocol label switching (MPLS) network has strict controls that enforce network segmentation by using MPLS VPNs. The company has provisioned two 10 Gbps AWS Direct Connect connections to provide resilient, high-speed, low-latency connectivity to AWS.

A security engineer needs to apply the concept of network segmentation to the AWS environment to ensure that virtual routing and forwarding (VRF) is logically separated for each of the company's software development environments. The number of MPLS VPNs will increase in the future. On-premises MPLS VPNs will have overlapping address space. The company's AWS network design must support overlapping address space for the VPNs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a software-defined WAN (SD-WAN) head-end virtual appliance and an SD-WAN controller into a Transit Gateway Connect VPC. Configure the company's edge routers to be managed by the new SD-WAN controller and to use SD-WAN to segment the traffic into the defined segments for each of the company's development environments.

B.

Configure IPsec VPNs on the company edge routers for each MPLS VPN for each of the company's development environments. Attach each IPsec VPN tunnel to a discrete MPLS VPN. Configure AWS Site-to-Site VPN connections that terminate at a transit gateway for each MPLS VPN. Configure a transit gateway route table that matches the MPLS VPN for each Transit Gateway VPN attachment.

C.

Create a transit VPC that terminates at the AWS Site-to-Site VRF-aware IPsec VPN. Configure IPsec VPN connections to each VPC for each of the company's development environment VRFs.

D.

Configure a Transit Gateway Connect attachment for each MPLS VPN between the company's edge routers and Transit Gateway. Configure a transit gateway route table that matches the MPLS VPN for each of the company's development environments.

Buy Now
Questions 49

A banking company is successfully operating its public mobile banking stack on AWS. The mobile banking stack is deployed in a VPC that includes private subnets and public subnets. The company is using IPv4 networking and has not deployed or supported IPv6 in the environment. The company has decided to adopt a third-party service provider's API and must integrate the API with the existing environment. The service provider’s API requires the use of IPv6.

A network engineer must turn on IPv6 connectivity for the existing workload that is deployed in a private subnet. The company does not want to permit IPv6 traffic from the public internet and mandates that the company's servers must initiate all IPv6 connectivity. The network engineer turns on IPv6 in the VPC and in the private subnets.

Which solution will meet these requirements?

Options:

A.

Create an internet gateway and a NAT gateway in the VPC. Add a route to the existing subnet route tables to point IPv6 traffic to the NAT gateway.

B.

Create an internet gateway and a NAT instance in the VPC. Add a route to the existing subnetroute tables to point IPv6 traffic to the NAT instance.

C.

Create an egress-only Internet gateway in the VPAdd a route to the existing subnet route tables to point IPv6 traffic to the egress-only internet gateway.

D.

Create an egress-only internet gateway in the VPC. Configure a security group that denies all inbound traffic. Associate the security group with the egress-only internet gateway.

Buy Now
Questions 50

A company is planning to migrate an internal application to the AWS Cloud. The application will run on Amazon EC2 instances in one VPC. Users will access the application from the

company's on-premises data center through AWS VPN or AWS Direct Connect. Users will use private domain names for the application endpoint from a domain name that is reserved

explicitly for use in the AWS Cloud.

Each EC2 instance must have automatic failover to another EC2 instance in the same AWS account and the same VPC. A network engineer must design a DNS solution that will not expose

the application to the internet.

Which solution will meet these requirements?

Options:

A.

Assign public IP addresses to the EC2 instances. Create an Amazon Route 53 private hosted zone for the AWS reserved domain name. Associate the private hosted zone with

the VPC. Create a Route 53 Resolver outbound endpoint. Configure conditional forwarding in the on-premises DNS resolvers to forward all DNS queries for the AWS domain to

the outbound endpoint IP address for Route 53 Resolver. In the private hosted zone, configure

B.

Place the EC2 instances in private subnets. Create an Amazon Route 53 public hosted zone for the AWS reserved domain name. Associate the public hosted zone with the

VPC. Create a Route 53 Resolver inbound endpoint. Configure conditional forwarding in the on-premises DNS resolvers to forward all DNS queries for the AWS domain to the

inbound endpoint IP address for Route 53 Resolver. In the public hosted zone, configure primary an

C.

Place the EC2 instances in private subnets. Create an Amazon Route 53 private hosted zone for the AWS reserved domain name. Associate the private hosted zone with the

VPC. Create a Route 53 Resolver inbound endpoint. Configure conditional forwarding in the on-premises DNS resolvers to forward all DNS queries for the AWS domain to the

inbound endpoint IP address for Route 53 Resolver. In the private hosted zone, configure primary

D.

Place the EC2 instances in private subnets. Create an Amazon Route 53 private hosted zone for the AWS reserved domain name. Associate the private hosted zone with the

VPC. Create a Route 53 Resolver inbound endpoint. Configure conditional forwarding in the on-premises DNS resolvers to forward all DNS queries for the AWS domain to the

inbound endpoint IP address for Route 53 Resolver. In the private hosted zone, configure primary

Buy Now
Questions 51

A company has agreed to collaborate with a partner for a research project. The company has multiple VPCs in the us-east-1 Region that use CIDR blocks within 10.10.0.0/16. The VPCs are connected by a transit gateway that is named TGW-C in us-east-1. TGW-C has an Autonomous System Number (ASN) configuration value of 64520.

The partner has multiple VPCs in us-east-1 that use CIDR blocks within 172.16.0.0/16. The VPCs are connected by a transit gateway that is named TGW-P in us-east-1. TGW-P has an ASN configuration value of 64530.

A network engineer needs to establish network connectivity between the company's VPCs and the partner's VPCs in us-east-1.

Which solution will meet these requirements with MINIMUM changes to both networks?

Options:

A.

Create a new VPC in a new account. Deploy a router from AWS Marketplace. Share TGW-C and TGW-P with the new account by using AWS Resource Access Manager (AWS RAM). Associate TGW-C and TGW-P with the new VPC. Configure the router in the new VPC to route between TGW-C and TGW-P.

B.

Create an IPsec VPN connection between TGW-C and TGW-P. Configure the routing between the transit gateways to use the IPsec VPN connection.

C.

Configure a cross-account transit gateway peering attachment between TGW-C and TGW-P. Configure the routing between the transit gateways to use the peering attachment.

D.

Share TGW-C with the partner account by using AWS Resource Access Manager (AWS RAM). Associate the partner VPCs with TGW-C. Configure routing in the partner VPCs and TGW-C.

Buy Now
Questions 52

A company has two on-premises data center locations. There is a company-managed router at each data center. Each data center has a dedicated AWS Direct Connect connection to a Direct Connect gateway through a private virtual interface. The router for the first location is advertising 110 routes to the Direct Connect gateway by using BGP, and the router for the second location is advertising 60 routes to the Direct Connect gateway by using BGP. The Direct Connect gateway is attached to a company VPC through a virtual private gateway.

A network engineer receives reports that resources in the VPC are not reachable from various locations in either data center. The network engineer checks the VPC route table and sees that the routes from the first data center location are not being populated into the route table. The network engineer must resolve this issue in the most operationally efficient manner.

What should the network engineer do to meet these requirements?

Options:

A.

Remove the Direct Connect gateway, and create a new private virtual interface from each company router to the virtual private gateway of the VPC.

B.

Change the router configurations to summarize the advertised routes.

C.

Open a support ticket to increase the quota on advertised routes to the VPC route table.

D.

Create an AWS Transit Gateway. Attach the transit gateway to the VPC, and connect the Direct Connect gateway to the transit gateway.

Buy Now
Questions 53

A company is building an API-based application on AWS and is using a microservices architecture for the design. The company is using a multi-account AWS environment that includes a separate AWS account for each microservice development team. Each team hosts its microservice in its own VPC that contains Amazon EC2 instances behind a Network Load Balancer (NLB).

A network engineer needs to use Amazon API Gateway in a shared services account to create an HTTP API to expose these microservices to external applications. The network engineer must ensure that access to the microservices can occur only over a private network. Additionally, the company must be able to control which entities from its internal network can connect to the microservices. In the future, the company will create more microservices that the company must be able to integrate with the application.

What is the MOST secure solution that meets these requirements?

Options:

A.

Create an Application Load Balancer (ALB) in a VPC in the shared services account. Configure the integration to the API Gateway API by using a VPC link. Associate the VPC link with the ALB. Create a VPC endpoint service in each microservice account. Create an AWS PrivateLink endpoint for those services in the shared services account. Add the elastic network interface IP addresses of the VPC endpoint as targets for the target group of the AL

B.

Create an Application Load Balancer (ALB) in a VPC in the shared services account. Configure the integration to the API Gateway API by using a VPC link. Associate the VPC link with the ALB. Connect all the VPCs to each other by using a central transit gateway. Add the IP addresses of the NLB as IP-based targets in the ALB target group.

C.

Configure the integration to the API Gateway API by using HTTP-based integration. Connect all the VPCs to each other by using a central transit gateway. Create a separateHTTP integration to each NLB for each microservice. Add the HTTP endpoint of the NLB as the endpoint URL in the HTTP integration.

D.

Configure the integration to the API Gateway API by using VPC link integration. Connect all the VPCs to each other by using a central transit gateway. Create a separate VPC link to each NLB for each microservice. Add the HTTP endpoint of the NLB as the endpoint URL in the VPC link integration.

Buy Now
Questions 54

A network engineer needs to deploy an AWS Network Firewall firewall into an existing AWS environment. The environment consists of the following:

A transit gateway with all VPCs attached to it

Several hundred application VPCs

A centralized egress internet VPC with a NAT gateway and an internet gateway

A centralized ingress internet VPC that hosts public Application Load Balancers

On-premises connectivity through an AWS Direct Connect gateway attachment

The application VPCs have workloads deployed across multiple Availability Zones in private subnets with the VPC route table s default route (0.0.0.0/0) pointing to the transit gateway. The Network Firewall firewall needs to inspect east-west (VPC-to-VPC) traffic and north-south (internet-bound and on-premises network) traffic by using Suricata compatible rules.

The network engineer must deploy the firewall by using a solution that requires the least possible architectural changes to the existing production environment.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

Options:

A.

Deploy Network Firewall in all Availability Zones in each application VPC.

B.

Deploy Network Firewall in all Availability Zones in a centralized inspection VPC.

C.

Update the HOME_NET rule group variable to include all CIDR ranges of the VPCs and on-premises networks.

D.

Update the EXTERNAL_NET rule group variable to include all CIDR ranges of the VPCs and on-premises networks.

E.

Configure a single transit gateway route table. Associate all application VPCs and the centralized inspection VPC with this route table.

F.

Configure two transit gateway route tables. Associate all application VPCs with one transit gateway route table. Associate the centralized inspection VPC with the other transit gateway route table.

Buy Now
Questions 55

A company has developed a new web application on AWS. The application runs on Amazon Elastic Container Service (Amazon ECS) on AWS Fargate behind an Application Load Balancer (ALB) in the us-east-1 Region. The application uses Amazon Route 53 to host the DNS records for the domain. The content that is served from the website is mostly static images and files that are not updated frequently. Most of the traffic to the website from end users will originate from the United States. Some traffic will originate from Canada and Europe.

A network engineer needs to design a solution that will reduce latency for end users at the lowest cost. The solution also must ensure that all traffic is encrypted in transit until the traffic reaches the ALB.

Which solution will meet these requirements?

Options:

A.

Configure the ALB to use an AWS Global Accelerator accelerator In us-east-1. Create a secure HTTPS listener. Create an alias record in Amazon Route 53 for the custom domain name. Configure the alias record to route to the DNS name that is assigned to the accelerator for the ALB.

B.

Configure the ALB to use a secure HTTPS listener Create an Amazon CloudFront distribution. Set the origin domain name to point to the DNS record that is assigned to the ALB. Configure the CloudFront distribution to use an SSL certificate. Set all behaviors to force HTTPS. Create an alias record in Amazon Route 53 for the custom domain name. Configure the alias record to route to the DNS name that is assigned to the ALB.

C.

Configure the ALB to use a secure HTTPS listener. Create an Amazon CloudFront distribution. Set the origin domain name to point to the DNS record that is assigned to the ALB. Configure the CloudFront distribution to use an SSL certificate and redirect HTTP to HTTPS. Create an alias record in Amazon Route 53 for the custom domain name. Configure the alias record to route to the CloudFront distribution.

D.

Configure the ALB to use an AWS Global Accelerator accelerator in us-east-1. Create a secure HTTPS listener. Create a second application stack on Amazon ECS on Fargate in the eu-west-1 Region Create another secure HTTPS listener. Create an alias record inAmazon Route 53 for the custom domain name. Configure the alias record to use a latency-based routing policy to route to the DNS name that is assigned to the accelerator for the ALBs.

Buy Now
Questions 56

An international company provides early warning about tsunamis. The company plans to use IoT devices to monitor sea waves around the world. The data that is collected by the IoT devices must reach the company’s infrastructure on AWS as quickly as possible. The company is using three operation centers around the world. Each operation center is connected to AWS through Its own AWS Direct Connect connection. Each operation center is connected to the internet through at least two upstream internet service providers.

The company has its own provider-independent (PI) address space. The IoT devices use TCP protocols for reliable transmission of the data they collect. The IoT devices have both landline and mobile internet connectivity. The infrastructure and the solution will be deployed in multiple AWS Regions. The company will use Amazon Route 53 for DNS services.

A network engineer needs to design connectivity between the IoT devices and the services that run in the AWS Cloud.

Which solution will meet these requirements with the HIGHEST availability?

Options:

A.

Set up an Amazon CloudFront distribution with origin failover. Create an origin group for each Region where the solution is deployed.

B.

Set up Route 53 latency-based routing. Add latency alias records. For the latency alias records,set the value of Evaluate Target Health to Yes.

C.

Set up an accelerator in AWS Global Accelerator. Configure Regional endpoint groups and health checks.

D.

Set up Bring Your Own IP (BYOIP) addresses. Use the same PI addresses for each Region where the solution is deployed.

Buy Now
Questions 57

A company needs to temporarily scale out capacity for an on-premises application and wants to deploy new servers on Amazon EC2 instances. A network engineer must design the networking solution for the connectivity and for the application on AWS.

The EC2 instances need to share data with the existing servers in the on-premises data center. The servers must not be accessible from the internet. All traffic to the internet must route through the firewall in the on-premises data center. The servers must be able to access a third-party web application.

Which configuration will meet these requirements?

Options:

A.

Create a VPC that has public subnets and private subnets. Create a customer gateway, a virtual private gateway, and an AWS Site-to-Site VPN connection. Create a NAT gateway in a public subnet. Create a route table, and associate the public subnets with the route table. Add a default route to the internet gateway. Create a route table, and associate the private subnets with the route table. Add a default route to the NAT gateway. Add routes

B.

Create a VPC that has private subnets. Create a customer gateway, a virtual private gateway, and an AWS Site-to-Site VPN connection. Create a route table, and associate the private subnets with the route table. Add a default route to the virtual private gateway. Deploy the application to the private subnets.

C.

Create a VPC that has public subnets. Create a customer gateway, a virtual private gateway, and an AWS Site-to-Site VPN connection. Create a route table, and associate the public subnets with the route table. Add a default route to the internet gateway. Add routes for the on-premises data center subnets to the virtual private gateway. Deploy the application to the public subnets.

D.

Create a VPC that has public subnets and private subnets. Create a customer gateway, a virtual private gateway, and an AWS Site-to-Site VPN connection. Create a route table, and associate the public subnets with the route table. Add a default route to the internet gateway. Create a route table, and associate the private subnets with the route table. Add routes for the on-premises data center subnets to the virtual private gateway. Deploy th

Buy Now
Questions 58

An international company wants to implement a multi-site hybrid infrastructure. The company wants to deploy its cloud computing resources on AWS in the us-east-1 Region and in the eu-west-2 Region, and in on-premises data centers in the United States (US) and in the United Kingdom (UK). The data centers are connected to each other by a private WAN connection. IP routing information is exchanged dynamically through BGP. The company wants to have two AWS Direct Connect connections, one each in the US and the UK.

The company expects to have 15 VPCs in each Region with CIDR blocks that do not overlap with each other or with CIDR blocks of the on-premises environment. The VPC CIDR blocks are planned so that the prefix aggregation can be performed both on a Regional level and across the entire AWS environment. The company will deploy a transit gateway in each Region to connect the VPCs. A network engineer plans to use a Direct Connect gateway in each Region. A transit VIF will attach the Direct Connect gateway in each Region to the transit gateway in that Region. The transit gateways will be peered with each other.

The network engineer wants to ensure that traffic follows the shortest geographical path from source to destination. Traffic between the on-premises data centers and AWS must travel across a local Direct Connect connection. Traffic between the US data center and eu-west-2 and traffic between the UK data center and us-east-1 must use the private WAN connection to reach the Direct Connect connection to the appropriate Region when the Direct Connect connection is available. The network must be resilient to failures in either the private WAN connection or with the Direct Connect connections. The network also must reroute traffic automatically in the event of any failure.

How should the network engineer configure the transit VIF associations on the Direct Connect gateways to meet these requirements?

Options:

A.

Advertise only the aggregate route for the company's entire AWS environment.

B.

Advertise VPC-specific CIDR prefixes from only the local Region. Additionally, advertise the aggregate route for the company’s entire AWS environment.

C.

Advertise all the specific VPC CIDR blocks from both Regions.

D.

Advertise both Regional aggregate prefixes. Configure custom BGP communities on the routes advertised toward the data center.

Buy Now
Questions 59

AnyCompany deploys and manages networking resources in its AWS network account, named Account-A. AnyCompany acquires Example Corp, which has an application that runs behind an Application Load Balancer (ALB) in Example Corp's AWS account, named Account-B.

Example Corp needs to use AWS Global Accelerator to create an accelerator to publish the application to users. AnyCompany's networking team will manage the accelerator.

Which solution will meet these requirements with the LEAST management overhead?

Options:

A.

Create an accelerator in Account-В. Use a cross-account role from Account-A to grant the networking team access to manage the accelerator.

B.

Deploy a Network Load Balancer (NLB) in Account-A to route traffic to the ALB in Account-В. Create an accelerator, and set the NLB as the endpoint in Account-A.

C.

Create a cross-account Global Accelerator attachment in Account-В for the Account-A principal. Create an accelerator in Account-A by using the shared attachment.

D.

Create an accelerator in Account-A. Use AWS Resource Access Management (AWS RAM) to share the accelerator with Account-В. Associate the ALB in Account-В with the accelerator in Account-A.

Buy Now
Questions 60

A company has two AWS Direct Connect connections between Direct Connect locations and the company's on-premises environment in the US. The company uses the connections to communicate with AWS workloads that run in the us-east-1 Region. Thecompany has a transit gateway that connects several VPCs. The Direct Connect connections terminate at a Direct Connect gateway and the transit VIFs to the transit gateway.

The company recently acquired a smaller company that is based in Europe. The newly acquired company has only on-premises workloads. The newly acquired company does not

expect to run workloads on AWS for the next 3 years. However, the newly acquired company requires connectivity to the parent company's AWS resources in us-east-1 and to the

parent company's on-premises environment in the US. The parent company wants to use two new Direct Connect connections in Europe to provide the required connectivity.

Which solution will meet these requirements with the LEAST operational overhead for the newly acquired company?

Options:

A.

Associate new transit VIFs to the existing Direct Connect gateway. Configure the new transit VIFs to use Direct Connect SiteLink.

B.

Associate new transit VIFs to a new Direct Connect gateway and to a new transit gateway in the eu-west-1 Region. Use transit gateway peering to connect the transit gateways.

C.

Associate new private VIFs to the existing Direct Connect gateway. Configure the existing transit VIFs and the new private VIFs to use Direct Connect SiteLink.

D.

Associate new private VIFs to a new Direct Connect gateway and to a new VPC in us-east-1. Configure the existing transit VIFs and the new private VIFs to use Direct Connect SiteLink and AWS PrivateLink endpoints in the new VPC.

Buy Now
Questions 61

A company deployed an application in two AWS Regions in one AWS account. The company has one VPC in each Region. The VPCs use non-overlapping private CIDR ranges.

The company needs to connect both VPCs to a single on-premises data center to test theapplication. The application requires up to 800 Mbps of throughput. A network engineer needs to establish connectivity between the VPCs and the on-premises data center.

Which solution will meet this requirement with the LEAST operational overhead?

Options:

A.

Order a 2 Gbps Direct Connect connection for the data center. Configure a virtual private gateway in each VPC. Create a private VIF for each virtual private gateway, and associate the virtual private gateways with the Direct Connect connection. Configure static routes in the VPC route tables and in the data center router.

B.

Order a 2 Gbps Direct Connect connection for the data center. Configure a virtual private gateway in each VPC. Create a private VIF for each virtual private gateway, and associate the virtual private gateways with the Direct Connect connection. Configure Open Shortest Path First (OSPF) routing between the private VIF and the data center.

C.

Configure a customer gateway and a virtual private gateway in each VPC. Configure an AWS Site-to-Site VPN connection between the data center and each VPC. Configure static routes in each VPC route table to point to the subnets in the data center.

D.

Configure a customer gateway and a virtual private gateway in each VPC. Configure an AWS Site-to-Site VPN connection between the data center and each VPC. Configure BGP routing between the VPCs and the data center.

Buy Now
Questions 62

A network engineer is designing the DNS architecture for a new AWS environment. The environment must be able to resolve DNS names of endpoints on premises, and the on-premises systems must be able to resolve the names of AWS endpoints. The DNS architecture must give individual accounts the ability to manage subdomains.

The network engineer needs to create a single set of rules that will work across multiple accounts to control this behavior. In addition, the network engineer must use AWS native services whenever possible.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

Options:

A.

Create an Amazon Route 53 private hosted zone for the overall cloud domain. Plan to create subdomains that align to other AWS accounts that are associated with the central Route 53 private hosted zone.

B.

Create AWS Directory Service for Microsoft Active Directory server endpoints in the central AWS account that hosts the private hosted zone for the overall cloud domain. Create a conditional forwarding rule in Microsoft Active Directory DNS to forward traffic to a DNS resolver endpoint on premises. Create another rule to forward traffic betweensubdomains to the VPC resolver.

C.

Create Amazon Route 53 Resolver inbound and outbound endpoints in the central AWS account that hosts the private hosted zone for the overall cloud domain. Create a forwarding rule to forward traffic to a DNS resolver endpoint on premises. Create another rule to forward traffic between subdomains to the Resolver inbound endpoint.

D.

Ensure that networking exists between the other accounts and the central account so that traffic can reach the AWS Directory Service for Microsoft Active Directory DNS endpoints.

E.

Ensure that networking exists between the other accounts and the central account so that traffic can reach the Amazon Route 53 Resolver endpoints.

F.

Share the Amazon Route 53 Resolver rules between accounts by using AWS Resource Access Manager (AWS RAM). Ensure that networking exists between the other accounts and the central account so that traffic can reach the Route 53 Resolver endpoints.

Buy Now
Questions 63

A company has been using an outdated application layer protocol for communication among applications. The company decides not to use this protocol anymore and must migrate allapplications to support a new protocol. The old protocol and the new protocol are TCP-based, but the protocols use different port numbers.

After several months of work, the company has migrated dozens of applications that run on Amazon EC2 instances and in containers. The company believes that all the applications have been migrated, but the company wants to verify this belief. A network engineer needs to verify that no application is still using the old protocol.

Which solution will meet these requirements without causing any downtime?

Options:

A.

Use Amazon Inspector and its Network Reachability rules package. Wait until the analysis has finished running to find out which EC2 instances are still listening to the old port.

B.

Enable Amazon GuardDuty. Use the graphical visualizations to filter for traffic that uses the port of the old protocol. Exclude all internet traffic to filter out occasions when the same port is used as an ephemeral port.

C.

Configure VPC flow logs to be delivered into an Amazon S3 bucket. Use Amazon Athena to query the data and to filter for the port number that is used by the old protocol.

D.

Inspect all security groups that are assigned to the EC2 instances that host the applications. Remove the port of the old protocol if that port is in the list of allowed ports. Verify that the applications are operating properly after the port is removed from the security groups.

Buy Now
Questions 64

A company has an application that hosts personally identifiable information (PII) of users. All connections to the application must be secured by HTTPS with TLS certificates that implement Elliptic Curve Cryptography (ECC).

The application uses stateful connections between the web tier and the end users. Multiple instances host the application. A network engineer must implement a solutionthat offloads TLS connections to a load balancer.

Which load-balancing solution will meet these requirements?

Options:

A.

Provision a Network Load Balancer. Configure a TLS listener by specifying the use of an ECC SSL certificate that is uploaded to AWS identity and Access Management (IAM). Turn on health checks to monitor the web hosts that connect to the end users.

B.

Provision an Application Load Balancer. Configure an HTTPS listener by specifying the use of an ECC SSL certificate that is uploaded to AWS Certificate Manager (ACM). Configure a default action to redirect to the URL for the application. Turn on health checks to monitor the web hosts that connect to the end users.

C.

Provision a Network Load Balancer. Configure a TLS listener by specifying the use of an ECC SSL certificate that is uploaded to AWS Certificate Manager (ACM). Turn on application-based session affinity (sticky sessions). Turn on health checks to monitor the web hosts that connect to the end users.

D.

Provision an Application Load Balancer. Configure an HTTPS listener by specifying the use of an ECC SSL certificate that is uploaded to AWS Identity and Access Management (IAM). Configure a default action to redirect to the URL for the application. Turn on application-based session affinity (sticky sessions).

Buy Now
Questions 65

A company has hundreds of Amazon EC2 instances that are running in two production VPCs across all Availability Zones in the us-east-1 Region. The production VPCs are named

VPC A and VPC B.

A new security regulation requires all traffic between production VPCs to be inspected before the traffic is routed to its final destination. The company deploys a new shared VPC that

contains a stateful firewall appliance and a transit gateway with a VPC attachment across all VPCs to route traffic between VPC A and VPC B through the firewall appliance for

inspection. During testing, the company notices that the transit gateway is dropping the traffic whenever the traffic is between two Availability Zones.

What should a network engineer do to fix this issue with the LEAST management overhead?

Options:

A.

In the shared VPC, replace the VPC attachment with a VPN attachment. Create a VPN tunnel between the transit gateway and the firewall appliance. Configure BGP.

B.

Enable transit gateway appliance mode on the VPC attachment in VPC A and VPC B.

C.

Enable transit gateway appliance mode on the VPC attachment in the shared VPC.

D.

In the shared VPC, configure one VPC peering connection to VPC A and another VPC peering connection to VPC B.

Buy Now
Questions 66

A company is running multiple workloads on Amazon EC2 instances in public subnets. In a recent incident, an attacker exploited an application vulnerability on one of the EC2 instances to gain access to the instance. The company fixed the application and launched a replacement EC2 instance that contains the updated application.

The attacker used the compromised application to spread malware over the internet. The company became aware of the compromise through a notification from AWS. The company needs the ability to identify when an application that is deployed on an EC2 instance is spreading malware.

Which solution will meet this requirement with the LEAST operational effort?

Options:

A.

Use Amazon GuardDuty to analyze traffic patterns by inspecting DNS requests and VPC flow logs.

B.

Use Amazon GuardDuty to deploy AWS managed decoy systems that are equipped with the most recent malware signatures.

C.

Set up a Gateway Load Balancer. Run an intrusion detection system (IDS) appliance from AWS Marketplace on Amazon EC2 for traffic inspection.

D.

Configure Amazon Inspector to perform deep packet inspection of outgoing traffic.

Buy Now
Questions 67

A data analytics company has a 100-node high performance computing (HPC) cluster. The HPC cluster is for parallel data processing and is hosted in a VPC in the AWS Cloud. As part of the data processing workflow, the HPC cluster needs to perform several DNS queries to resolve and connect to Amazon RDS databases, Amazon S3 buckets, and on-premises data stores that are accessible through AWS Direct Connect. The HPC cluster can increase in size by five to seven times during the company’s peak event at the end of the year.

The company is using two Amazon EC2 instances as primary DNS servers for the VPC. The EC2 instances are configured to forward queries to the default VPC resolver for Amazon Route 53 hosted domains and to the on-premises DNS servers for other on-premises hosted domain names. The company notices job failures and finds that DNS queries from the HPC cluster nodes failed when the nodes tried to resolve RDS and S3 bucket endpoints.

Which architectural change should a network engineer implement to provide the DNS service in the MOST scalable way?

Options:

A.

Scale out the DNS service by adding two additional EC2 instances in the VPC. Reconfigure half of the HPC cluster nodes to use these new DNS servers. Plan to scale out by adding additional EC2 instance-based DNS servers in the future as the HPC cluster size grows.

B.

Scale up the existing EC2 instances that the company is using as DNS servers. Change the instance size to the largest possible instance size to accommodate the current DNS load and the anticipated load in the future.

C.

Create Route 53 Resolver outbound endpoints. Create Route 53 Resolver rules to forward queries to on-premises DNS servers for on premises hosted domain names. Reconfigure the HPC cluster nodes to use the default VPC resolver instead of the EC2 instance-based DNS servers. Terminate the EC2 instances.

D.

Create Route 53 Resolver inbound endpoints. Create rules on the on-premises DNS servers to forward queries to the default VPC resolver. Reconfigure the HPC cluster nodes to forward all DNS queries to the on-premises DNS servers. Terminate the EC2 instances.

Buy Now
Questions 68

A company’s network engineer builds and tests network designs for VPCs in a development account. The company needs to monitor the changes that are made to network resources and must ensure strict compliance with network security policies. The company also needs access to the historical configurations of network resources.

Which solution will meet these requirements?

Options:

A.

Create an Amazon EventBridge (Amazon CloudWatch Events) rule with a custom pattern to monitor the account for changes. Configure the rule to invoke an AWS Lambda function to identify noncompliant resources. Update an Amazon DynamoDB table with the changes that are identified.

B.

Create custom metrics from Amazon CloudWatch logs. Use the metrics to invoke an AWS Lambda function to identify noncompliant resources. Update an Amazon DynamoDB table with the changes that are identified.

C.

Record the current state of network resources by using AWS Config. Create rules that reflect the desired configuration settings. Set remediation for noncompliant resources.

D.

Record the current state of network resources by using AWS Systems Manager Inventory. Use Systems Manager State Manager to enforce the desired configuration settings and to carry out remediation for noncompliant resources.

Buy Now
Questions 69

A company has deployed an AWS Network Firewall firewall into a VPC. A network engineer needs to implement a solution to deliver Network Firewall flow logs to the company’s Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster in the shortest possible time.

Which solution will meet these requirements?

Options:

A.

Create an Amazon S3 bucket. Create an AWS Lambda function to load logs into the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster. Enable Amazon Simple Notification Service (Amazon SNS) notifications on the S3 bucket to invoke the Lambda function. Configure flow logs for the firewall. Set the S3 bucket as the destination.

B.

Create an Amazon Kinesis Data Firehose delivery stream that includes the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster as the destination. Configure flow logs for the firewall Set the Kinesis Data Firehose delivery stream as the destination for the Network Firewall flow logs.

C.

Configure flow logs for the firewall. Set the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster as the destination for the Network Firewall flow logs.

D.

Create an Amazon Kinesis data stream that includes the Amazon OpenSearch Service (Amazon Elasticsearch Service) cluster as the destination. Configure flow logs for the firewall. Set the Kinesis data stream as the destination for the Network Firewall flow logs.

Buy Now
Questions 70

A consulting company manages AWS accounts for its customers. One of the company's customers needs to add intrusion prevention for its environment without having to re-architect the environment. The customer's environment includes five VPCs in two AWS Regions in the United States. VPC-to-VPC connectivity is achieved through VPC peering. The customer does not plan to increase the number of VPCs within the next 2 years. The solution must accommodate unencrypted traffic.

Which solution will meet these requirements?

Options:

A.

Configure VPC security groups and network ACLs.

B.

Use an AWS Network Firewall centralized deployment model in each VPC.

C.

Use an AWS Network Firewall distributed deployment model in each VPC.

D.

Deploy AWS Shield in each VPC.

Buy Now
Questions 71

A company's existing AWS environment contains public application servers that run on Amazon EC2 instances. The application servers run in a VPC subnet. Each server is associated with an Elastic IP address.

The company has a new requirement for firewall inspection of all traffic from the internet before the traffic reaches any EC2 instances. A security engineer has deployed and configured a Gateway Load Balancer (GLB) in a standalone VPC with a fleet of third-party firewalls.

How should a network engineer update the environment to ensure that the traffic travels across the fleet of firewalls?

Options:

A.

Deploy a transit gateway. Attach a GLB endpoint to the transit gateway. Attach the application VPC to the transit gateway. Update the application subnet route table's default route destination to be the GLB endpoint. Ensure that the EC2 instances' security group allows traffic from the GLB endpoint.

B.

Update the application subnet route table to have a default route to the GLB. On the standalone VPC that contains the firewall fleet, add a route in the route table for the application VPC's CIDR block with the GLB endpoint as the destination. Update the EC2 instances' security group to allow traffic from the GLB.

C.

Provision a GLB endpoint in the application VPC in a new subnet. Create a gateway route table with a route that specifies the application subnet CIDR block as the destination and the GLB endpoint as the target. Associate the gateway route table with the internet gateway in the application VPC. Update the application subnet route table's default route destination to be the GLB endpoint.

D.

Instruct the security engineer to move the GLB into the application VPC. Create a gateway route table. Associate the gateway route table with the application subnet. Add a default route to the gateway route table with the GLB as its destination. Update the route table on the GLB to direct traffic from the internet gateway to the application servers. Ensure that the EC2 instances' security group allows traffic from the GLB.

Buy Now
Questions 72

A marketing company is using hybrid infrastructure through AWS Direct Connect links and a software-defined wide area network (SD-WAN) overlay to connect its branch offices. The company connects multiple VPCs to a third-party SD-WAN appliance transit VPC within the same account by using AWS Site-to-Site VPNs.

The company is planning to connect more VPCs to the SD-WAN appliance transit VPC. However, the company faces challenges of scalability, route table limitations, and higher costs with the existing architecture. A network engineer must design a solution to resolve these issues and remove dependencies.

Which solution will meet these requirements with the LEAST amount of operational overhead?

Options:

A.

Configure a transit gateway to attach the VPCs. Configure a Site-to-Site VPN connection between the transit gateway and the third-party SD-WAN appliance transit VPC. Use the SD-WAN overlay links to connect to the branch offices.

B.

Configure a transit gateway to attach the VPCs. Configure a transit gateway Connect attachment for the third-party SD-WAN appliance transit VPC. Use transit gateway Connect native integration of SD-WAN virtual hubs with AWS Transit Gateway.

C.

Configure a transit gateway to attach the VPCs. Configure VPC peering between the VPCs and the third-party SD-WAN appliance transit VPC. Use the SD-WAN overlay links to connect to the branch offices.

D.

Configure VPC peering between the VPCs and the third-party SD-WAN appliance transit VPC. Use transit gateway Connect native integration of SD-WAN virtual hubs with AWS Transit Gateway.

Buy Now
Questions 73

A company hosts an application on Amazon EC2 instances behind an Application Load Balancer (ALB). The company recently experienced a network security breach. A network engineer must collect and analyze logs that include the client IP address, target IP address, target port, and user agent of each user that accesses the application.

What is the MOST operationally efficient solution that meets these requirements?

Options:

A.

Configure the ALB to store logs in an Amazon S3 bucket. Download the files from Amazon S3, and use a spreadsheet application to analyze the logs.

B.

Configure the ALB to push logs to Amazon Kinesis Data Streams. Use Amazon Kinesis Data Analytics to analyze the logs.

C.

Configure Amazon Kinesis Data Streams to stream data from the ALB to Amazon OpenSearch Service (Amazon Elasticsearch Service). Use search operations in Amazon OpenSearch Service (Amazon Elasticsearch Service) to analyze the data.

D.

Configure the ALB to store logs in an Amazon S3 bucket. Use Amazon Athena to analyze the logs in Amazon S3.

Buy Now
Questions 74

A customer has set up multiple VPCs for Dev, Test, Prod, and Management. You need to set up AWS Direct Connect to enable data flow from on-premises to each VPC. The customer has monitoring software running in the Management VPC that collects metrics from the instances in all the other VPCs. Due to budget requirements, data transfer charges should be kept at minimum.

Which design should be recommended?

Options:

A.

Create a total of four private VIFs, one for each VPC owned by the customer, and route traffic between VPCs using the Direct Connect link.

B.

Create a private VIF to the Management VPC, and peer this VPC to all other VPCs.

C.

Create a private VIF to the Management VPC, and peer this VPC to all other VPCs, enable source/destination NAT in the Management VPC.

D.

Create a total of four private VIFs, and enable VPC peering between all VPCs.

Buy Now
Questions 75

A company uses a hybrid architecture and has an AWS Direct Connect connection between its on-premises data center and AWS. The company has production applications that run in the on-premises data center. The company also has production applications that run in a VPC. The applications that run in the on-premises data center need to communicate with the applications that run in the VPC. The company is using corp.example.com as the domain name for the on-premises resources and is using an Amazon Route 53 private hosted zone for aws.example.com to host the VPC resources.

The company is using an open-source recursive DNS resolver in a VPC subnet and is using a DNS resolver in the on-premises data center. The company's on-premises DNS resolver has a forwarder that directs requests for the aws.example.com domain name to the DNS resolver in the VPC. The DNS resolver in the VPC has a forwarder that directs requests for the corp.example.com domain name to the DNS resolver in the on-premises data center. The company has deckled to replace the open-source recursive DNS resolver with Amazon Route 53 Resolver endpoints.

Which combination of steps should a network engineer take to make this replacement? (Choose three.)

Options:

A.

Create a Route 53 Resolver rule to forward aws.example.com domain queries to the IP addresses of the outbound endpoint.

B.

Configure the on-premises DNS resolver to forward aws.example.com domain queries to the IP addresses of the inbound endpoint.

C.

Create a Route 53 Resolver inbound endpoint and a Route 53 Resolver outbound endpoint.

D.

Create a Route 53 Resolver rule to forward aws.example.com domain queries to the IP addresses of the inbound endpoint.

E.

Create a Route 53 Resolver rule to forward corp.example.com domain queries to the IP address of the on-premises DNS resolver.

F.

Configure the on-premises DNS resolver to forward aws.example.com queries to the IP addresses of the outbound endpoint.

Buy Now
Questions 76

A team of infrastructure engineers wants to automate the deployment of Application Load Balancer (ALB) components by using the AWS Cloud Development Kit (AWS CDK). The CDK application must deploy an infrastructure stack that is reusable and consistent across multiple environments, AWS Regions, and AWS accounts.

The lead network architect on the project has already bootstrapped the target accounts. The lead network architect also has deployed core network components such as VPCs and Amazon Route 53 private hosted zones across the multiple environments and Regions. The infrastructure engineers must design the ALB components in the CDK application to use the existing core network components.

Which combination of steps will meet this requirement with the LEAST manual effort between environment deployments? (Choose two.)

Options:

A.

Design the CDK application to read AWS CloudFormation parameters for the values that vary across environments and Regions. Reference these variables in the CDK stack for resources that require the variables.

B.

Design the CDK application to read environment variables that contain account and Region details at runtime. Use these variables as properties of the CDK stack. Use context methods in the CDK stack to retrieve variable values.

C.

Create a dedicated account for shared application services in the multi-account environment. Deploy a CDK pipeline to the dedicated account. Create stages in the pipeline that deploy the CDK application across different environments and Regions.

D.

Write a script that automates the deployment of the CDK application across multiple environments and Regions. Distribute the script to engineers who are working on the project.

E.

Use the CDK toolkit locally to deploy stacks to each environment and Region. Use the --context flag to pass in variables that the CDK application can reference at runtime.

Buy Now
Questions 77

A company has a hybrid cloud environment. The company’s data center is connected to the AWS Cloud by an AWS Direct Connect connection. The AWS environment includes VPCs that are connected together in a hub-and-spoke model by a transit gateway. The AWS environment has a transit VIF with a Direct Connect gateway for on-premises connectivity.

The company has a hybrid DNS model. The company has configured Amazon Route 53 Resolver endpoints in the hub VPC to allow bidirectional DNS traffic flow. The company is running a backend application in one of the VPCs.

The company uses a message-oriented architecture and employs Amazon Simple Queue Service (Amazon SQS) to receive messages from other applications over a private network. A network engineer wants to use an interface VPC endpoint for Amazon SQS for this architecture. Client services must be able to access the endpoint service from on premises and from multiple VPCs within the company's AWS infrastructure.

Which combination of steps should the network engineer take to ensure that the client applications can resolve DNS for the interface endpoint? (Choose three.)

Options:

A.

Create the interface endpoint for Amazon SQS with the option for private DNS names turned on.

B.

Create the interface endpoint for Amazon SQS with the option for private DNS names turned off.

C.

Manually create a private hosted zone for sqs.us-east-1.amazonaws.com. Add necessary records that point to the interface endpoint. Associate the private hosted zones with other VPCs.

D.

Use the automatically created private hosted zone for sqs.us-east-1.amazonaws.com with previously created necessary records that point to the interface endpoint. Associate the private hosted zones with other VPCs.

E.

Access the SQS endpoint by using the public DNS name sqs.us-east-1 amazonaws.com in VPCs and on premises.

F.

Access the SQS endpoint by using the private DNS name of the interface endpoint .sqs.us-east-1.vpce.amazonaws.com in VPCs and on premises.

Buy Now
Questions 78

An application team for a startup company is deploying a new multi-tier application into the AWS Cloud. The application will be hosted on a fleet of Amazon EC2 instances that run in an Auto Scaling group behind a publicly accessible Network Load Balancer (NLB). The application requires the clients to work with UDP traffic and TCP traffic.

In the near term, the application will serve only users within the same geographic location. The application team plans to extend the application to a global audience and will move the deployment to multiple AWS Regions around the world to bring the application closer to the end users. The application team wants to use the new Regions to deploy new versions of the application and wants to be able to control the amount of traffic that each Region receives during these rollouts. In addition, the application team must minimize first-byte latency and jitter (randomized delay) for the end users.

How should the application team design the network architecture for the application to meet these requirements?

Options:

A.

Create an Amazon CloudFront distribution to align to each Regional deployment. Set the NLB for each Region as the origin for each CloudFront distribution. Use an Amazon Route 53 weighted routing policy to control traffic to the newer Regional deployments.

B.

Create an AWS Global Accelerator accelerator and listeners for the required ports. Configure endpoint groups for each Region. Configure a traffic dial for the endpoint groups to control traffic to the newer Regional deployments. Register the NLBs with the endpoint groups.

C.

Use Amazon S3 Transfer Acceleration for the application in each Region. Adjust the amount of traffic that each Region receives from the Transfer Acceleration endpoints to the Regional NLBs.

D.

Create an Amazon CloudFront distribution that includes an origin group. Set the NLB for each Region as the origins for the origin group. Use an Amazon Route 53 latency routing policy to control traffic to the new Regional deployments.

Buy Now
Questions 79

A network engineer is designing the architecture for a healthcare company's workload that is moving to the AWS Cloud. All data to and from the on-premises environment must be encrypted in transit. All traffic also must be inspected in the cloud before the traffic is allowed to leave the cloud and travel to the on-premises environment or to the internet.

The company will expose components of the workload to the internet so that patients can reserve appointments. The architecture must secure these components and protect them against DDoS attacks. The architecture also must provide protection against financial liability for services that scale out during a DDoS event.

Which combination of steps should the network engineer take to meet all these requirements for the workload? (Choose three.)

Options:

A.

Use Traffic Mirroring to copy all traffic to a fleet of traffic capture appliances.

B.

Set up AWS WAF on all network components.

C.

Configure an AWS Lambda function to create Deny rules in security groups to block malicious IP addresses.

D.

Use AWS Direct Connect with MACsec support for connectivity to the cloud.

E.

Use Gateway Load Balancers to insert third-party firewalls for inline traffic inspection.

F.

Configure AWS Shield Advanced and ensure that it is configured on all public assets.

Buy Now
Questions 80

A company has a web application that runs in eight AWS Regions. In each Region, the application is hosted on multiple compute resources behind an Application Load Balancer (ALB).

The different Regions are using different domains. Each ALB is configured to accept only HTTPS traffic. Each ALB uses a certificate from AWS Certificate Manager (ACM).

The company wants to simplify the application’s appearance on the web by using a new single domain for all Regions. A network engineer needs to implement this change by designing a solution that also will minimize latency for the application's end users.

Which combination of actions will meet these requirements? (Choose three.)

Options:

A.

Use ACM to create an SSL/TLS certificate in the us-east-1 Region for the new domain.

B.

Set up latency-based routing in Amazon Route 53 for the new domain. Add the ALBs from all the Regions as targets.

C.

Create an alias record for the accelerator in Amazon Route 53 for the new domain.

D.

Create a standard accelerator in AWS Global Accelerator. Configure a listener for TCP traffic. Add all the ALBs as targets for the listener.

E.

Use ACM to create an SSLITLS certificate for each Region. Configure all the ALBs to use the certificate in their respective Regions.

F.

Create a custom routing accelerator in AWS Global Accelerator. Configure a listener for HTTPS traffic. Add all the ALBs as targets for the listener. Configure the accelerator to terminate TLS by using the SSLITLS certificate from ACM.

Buy Now
Questions 81

An AWS CloudFormation template is being used to create a VPC peering connection between two existing operational VPCs, each belonging to a different AWS account. All necessary components in the ‘Remote’ (receiving) account are already in place.

The template below creates the VPC peering connection in the Originating account. It contains these components:

AWSTemplateFormation Version: 2010-09-09

Parameters:

Originating VCId:

Type: String

RemoteVPCId:

Type: String

RemoteVPCAccountId:

Type: String

Resources:

newVPCPeeringConnection:

Type: ‘AWS::EC2::VPCPeeringConnection’

Properties:

VpcdId: !Ref OriginatingVPCId

PeerVpcId: !Ref RemoteVPCId

PeerOwnerId: !Ref RemoteVPCAccountId

Which additional AWS CloudFormation components are necessary in the Originating account to create an operational cross-account VPC peering connection with AWS CloudFormation? (Select two.)

Options:

A.

Resources:NewEC2SecurityGroup:Type: AWS::EC2::SecurityGroup

B.

Resources:NetworkInterfaceToRemoteVPC:Type: “AWS::EC2NetworkInterface”

C.

Resources:newEC2Route:Type: AWS::EC2::Route

D.

Resources:VPCGatewayToRemoteVPC:Type: “AWS::EC2::VPCGatewayAttachment”

E.

Resources:newVPCPeeringConnection:Type: ‘AWS::EC2VPCPeeringConnection’PeerRoleArn: !Ref PeerRoleArn

Buy Now
Questions 82

A global film production company uses the AWS Cloud to encode and store its videocontent before distribution. The company's three global offices are connected to the us-east-1 Region through AWS Site-to-Site VPN links that terminate on a transit gateway with BGP routing activated.

The company recently started to produce content at a higher resolution to support 8K streaming. The size of the content files has increased to three times the size of the content files from the previous format. Uploads of files to Amazon EC2 instances are taking 10 times longer than they did with the previous format.

Which actions should a network engineer recommend to reduce the upload times? (Choose two.)

Options:

A.

Create a second VPN tunnel from each office location to the transit gateway. Activate equal-cost multi-path (ECMP) routing.

B.

Modify the transit gateway to activate Jumbo MTU on the VPN tunnels to each office location.

C.

Replace the existing VPN tunnels with new tunnels that have acceleration activated.

D.

Upgrade each EC2 instance to a modern instance type. Activate Jumbo MTU in the operating system.

E.

Replace the existing VPN tunnels with new tunnels that have IGMP activated.

Buy Now
Questions 83

A company is deploying a new application in the AWS Cloud. The company wants a highly available web server that will sit behind an Elastic Load Balancer. The load balancer will route requests to multiple target groups based on the URL in the request. All traffic must use HTTPS. TLS processing must be offloaded to the load balancer. The web server must know the user’s IP address so that the company can keep accurate logs for security purposes.

Which solution will meet these requirements?

Options:

A.

Deploy an Application Load Balancer with an HTTPS listener. Use path-based routing rules to forward the traffic to the correct target group. Include the X-Forwarded-For request header with traffic to the targets.

B.

Deploy an Application Load Balancer with an HTTPS listener for each domain. Use host-based routing rules to forward the traffic to the correct target group for each domain. Include the X-Forwarded-For request header with traffic to the targets.

C.

Deploy a Network Load Balancer with a TLS listener. Use path-based routing rules to forward the traffic to the correct target group. Configure client IP address preservation for traffic to the targets.

D.

Deploy a Network Load Balancer with a TLS listener for each domain. Use host-based routing rules to forward the traffic to the correct target group for each domain. Configure client IP address preservation for traffic to the targets.

Buy Now
Questions 84

A company has hundreds of VPCs on AWS. All the VPCs access the public endpoints of Amazon S3 and AWS Systems Manager through NAT gateways. All the traffic from the VPCs to Amazon S3 and Systems Manager travels through the NAT gateways. The company's network engineer must centralize access to these services and must eliminate the need to use public endpoints.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Create a central egress VPC that has private NAT gateways. Connect all the VPCs to the central egress VPC by using AWS Transit Gateway. Use the private NAT gateways to connect to Amazon S3 and Systems Manager by using private IP addresses.

B.

Create a central shared services VPC. In the central shared services VPC, create interface VPC endpoints for Amazon S3 and Systems Manager to access. Ensure that private DNS is turned off. Connect all the VPCs to the central shared services VPC by using AWS Transit Gateway. Create an Amazon Route 53 forwarding rule for each interface VPC endpoint. Associate the forwarding rules with all the VPCs. Forward DNS queries to the interface VPC end

C.

Create a central shared services VPIn the central shared services VPC, create interface VPC endpoints for Amazon S3 and Systems Manager to access. Ensure that private DNS is turned off. Connect all the VPCs to the central shared services VPC by using AWS Transit Gateway. Create an Amazon Route 53 private hosted zone with a full service endpoint name for Amazon S3 and Systems Manager. Associate the private hosted zones with all the VPCs. Cre

D.

Create a central shared services VPC. In the central shared services VPC, create interface VPC endpoints for Amazon S3 and Systems Manager to access. Connect all the VPCs to the central shared services VPC by using AWS Transit Gateway. Ensure that private DNS is turned on for the interface VPC endpoints and that the transit gateway is created with DNS support turned on.

Buy Now
Questions 85

All IP addresses within a 10.0.0.0/16 VPC are fully utilized with application servers across two Availability Zones. The application servers need to send frequent UDP probes to a single central authentication server on the Internet to confirm that is running up-to-date packages. The network is designed for application servers to use a single NAT gateway for internal access. Testing reveals that a few of the servers are unable to communicate with the authentication server.

Options:

A.

The NAT gateway does not support UDP traffic.

B.

The authentication server is not accepting traffic.

C.

The NAT gateway cannot allocate more ports.

D.

The NAT gateway is launched in a private subnet.

Buy Now
Questions 86

A company has set up hybrid connectivity between its VPCs and its on-premises data center. The company has the on-premises.example.com subdomain configured at its DNS server in the on-premises data center. The company is using the aws.example.com subdomain for workloads that run on AWS across different VPCs and accounts. Resources in both environments can access each other by using IP addresses. The company wants workloads in the VPCs to be able to access resources on premises by using the on-premises.example.com DNS names.

Which solution will meet these requirements with MINIMUM management of resources?

Options:

A.

Create an Amazon Route 53 Resolver outbound endpoint. Configure a Resolver rule that conditionally forwards DNS queries for on-premises.example.com to the on-premises DNS server. Associate the rule with the VPCs.

B.

Create an Amazon Route 53 Resolver inbound endpoint and a Resolver outboundendpoint. Configure a Resolver rule that conditionally forwards DNS queries for on-premises.example.com to the on-premises DNS server. Associate the rule with the VPCs.

C.

Launch an Amazon EC2 instance. Install and configure BIND software to conditionally forward DNS queries for on-premises.example.com to the on-premises DNS server. Configure the EC2 instance's IP address as a custom DNS server in each VPC.

D.

Launch an Amazon EC2 instance in each VPC. Install and configure BIND software to conditionally forward DNS queries for on-premises.example.com to the on-premises DNS server. Configure the EC2 instance's IP address as a custom DNS server in each VPC.

Buy Now
Questions 87

A company uses a 1 Gbps AWS Direct Connect connection to connect its AWS environment to its on-premises data center. The connection provides employees with access to an application VPC that is hosted on AWS. Many remote employees use a company-provided VPN to connect to the data center. These employees are reporting slowness when they access the application during business hours. On-premises users have started to report similar slowness while they are in the office.

The company plans to build an additional application on AWS. On-site and remote employees will use the additional application. After the deployment of this additional application, the company will need 20% more bandwidth than the company currently uses. With the increased usage, the company wants to add resiliency to the AWS connectivity. A network engineer must review the current implementation and must make improvements within a limited budget.

What should the network engineer do to meet these requirements MOST cost-effectively?

Options:

A.

Set up a new 1 Gbps Direct Connect dedicated connection to accommodate the additional traffic load from remote employees and the additional application. Create a link aggregation group (LAG).

B.

Deploy an AWS Site-to-Site VPN connection to the application VPC. Configure the on-premises routing for the remote employees to connect to the Site-to-Site VPN connection.

C.

Deploy Amazon Workspaces into the application VPInstruct the remote employees to connect to Workspaces.

D.

Replace the existing 1 Gbps Direct Connect connection with two new 2 Gbps Direct Connect hosted connections. Create an AWS Client VPN endpoint in the application VPC. Instruct the remote employees to connect to the Client VPN endpoint.

Buy Now
Exam Code: ANS-C01
Exam Name: Amazon AWS Certified Advanced Networking - Specialty
Last Update: Jun 15, 2025
Questions: 288
ANS-C01 pdf

ANS-C01 PDF

$29.75  $84.99
ANS-C01 Engine

ANS-C01 Testing Engine

$35  $99.99
ANS-C01 PDF + Engine

ANS-C01 PDF + Testing Engine

$47.25  $134.99