A health care company is planning to use neural networks to classify their X-ray images into normal and abnormal classes. The labeled data is divided into a training set of 1,000 images and a test set of 200 images. The initial training of a neural network model with 50 hidden layers yielded 99% accuracy on the training set, but only 55% accuracy on the test set.
What changes should the Specialist consider to solve this issue? (Choose three.)
A data scientist receives a collection of insurance claim records. Each record includes a claim ID. the final outcome of the insurance claim, and the date of the final outcome.
The final outcome of each claim is a selection from among 200 outcome categories. Some claim records include only partial information. However, incomplete claim records include only 3 or 4 outcome ...gones from among the 200 available outcome categories. The collection includes hundreds of records for each outcome category. The records are from the previous 3 years.
The data scientist must create a solution to predict the number of claims that will be in each outcome category every month, several months in advance.
Which solution will meet these requirements?
An ecommerce company has observed that customers who use the company's website rarely view items that the website recommends to customers. The company wants to recommend items to customers that customers are more likely to want to purchase.
Which solution will meet this requirement in the SHORTEST amount of time?
A data scientist is working on a public sector project for an urban traffic system. While studying the traffic patterns, it is clear to the data scientist that the traffic behavior at each light is correlated, subject to a small stochastic error term. The data scientist must model the traffic behavior to analyze the traffic patterns and reduce congestion.
How will the data scientist MOST effectively model the problem?
A Machine Learning Specialist is packaging a custom ResNet model into a Docker container so the company can leverage Amazon SageMaker for training. The Specialist is using Amazon EC2 P3 instances to train the model and needs to properly configure the Docker container to leverage the NVIDIA GPUs.
What does the Specialist need to do?
A retail company stores 100 GB of daily transactional data in Amazon S3 at periodic intervals. The company wants to identify the schema of the transactional data. The company also wants to perform transformations on the transactional data that is in Amazon S3.
The company wants to use a machine learning (ML) approach to detect fraud in the transformed data.
Which combination of solutions will meet these requirements with the LEAST operational overhead? {Select THREE.)
A chemical company has developed several machine learning (ML) solutions to identify chemical process abnormalities. The time series values of independent variables and the labels are available for the past 2 years and are sufficient to accurately model the problem.
The regular operation label is marked as 0. The abnormal operation label is marked as 1 . Process abnormalities have a significant negative effect on the companys profits. The company must avoid these abnormalities.
Which metrics will indicate an ML solution that will provide the GREATEST probability of detecting an abnormality?
A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket. A Machine Learning Specialist wants to use SQL to run queries on this data.
Which solution requires the LEAST effort to be able to query this data?
A manufacturing company has a production line with sensors that collect hundreds of quality metrics. The company has stored sensor data and manual inspection results in a data lake for several months. To automate quality control, the machine learning team must build an automated mechanism that determines whether the produced goods are good quality, replacement market quality, or scrap quality based on the manual inspection results.
Which modeling approach will deliver the MOST accurate prediction of product quality?
A company distributes an online multiple-choice survey to several thousand people. Respondents to the survey can select multiple options for each question.
A machine learning (ML) engineer needs to comprehensively represent every response from all respondents in a dataset. The ML engineer will use the dataset to train a logistic regression model.
Which solution will meet these requirements?
A company wants to classify user behavior as either fraudulent or normal. Based on internal research, a Machine Learning Specialist would like to build a binary classifier based on two features: age of account and transaction month. The class distribution for these features is illustrated in the figure provided.
Based on this information which model would have the HIGHEST accuracy?
A Machine Learning Specialist works for a credit card processing company and needs to predict which
transactions may be fraudulent in near-real time. Specifically, the Specialist must train a model that returns the
probability that a given transaction may fraudulent.
How should the Specialist frame this business problem?
A Data Scientist is training a multilayer perception (MLP) on a dataset with multiple classes. The target class of interest is unique compared to the other classes within the dataset, but it does not achieve and acceptable ecall metric. The Data Scientist has already tried varying the number and size of the MLP’s hidden layers,
which has not significantly improved the results. A solution to improve recall must be implemented as quickly as possible.
Which techniques should be used to meet these requirements?
A company wants to predict stock market price trends. The company stores stock market data each business day in Amazon S3 in Apache Parquet format. The company stores 20 GB of data each day for each stock code.
A data engineer must use Apache Spark to perform batch preprocessing data transformations quickly so the company can complete prediction jobs before the stock market opens the next day. The company plans to track more stock market codes and needs a way to scale the preprocessing data transformations.
Which AWS service or feature will meet these requirements with the LEAST development effort over time?
A Machine Learning Specialist needs to be able to ingest streaming data and store it in Apache Parquet files for exploration and analysis. Which of the following services would both ingest and store this data in the correct format?
A company is launching a new product and needs to build a mechanism to monitor comments about the company and its new product on social media. The company needs to be able to evaluate the sentiment expressed in social media posts, and visualize trends and configure alarms based on various thresholds.
The company needs to implement this solution quickly, and wants to minimize the infrastructure and data science resources needed to evaluate the messages. The company already has a solution in place to collect posts and store them within an Amazon S3 bucket.
What services should the data science team use to deliver this solution?
A company wants to forecast the daily price of newly launched products based on 3 years of data for older product prices, sales, and rebates. The time-series data has irregular timestamps and is missing some values.
Data scientist must build a dataset to replace the missing values. The data scientist needs a solution that resamptes the data daily and exports the data for further modeling.
Which solution will meet these requirements with the LEAST implementation effort?
A company operates an amusement park. The company wants to collect, monitor, and store real-time traffic data at several park entrances by using strategically placed cameras. The company's security team must be able to immediately access the data for viewing. Stored data must be indexed and must be accessible to the company's data science team.
Which solution will meet these requirements MOST cost-effectively?
A company is running a machine learning prediction service that generates 100 TB of predictions every day A Machine Learning Specialist must generate a visualization of the daily precision-recall curve from the predictions, and forward a read-only version to the Business team.
Which solution requires the LEAST coding effort?
A company provisions Amazon SageMaker notebook instances for its data science team and creates Amazon VPC interface endpoints to ensure communication between the VPC and the notebook instances. All connections to the Amazon SageMaker API are contained entirely and securely using the AWS network. However, the data science team realizes that individuals outside the VPC can still connect to the notebook instances across the internet.
Which set of actions should the data science team take to fix the issue?
A company's Machine Learning Specialist needs to improve the training speed of a time-series forecasting model using TensorFlow. The training is currently implemented on a single-GPU machine and takes approximately 23 hours to complete. The training needs to be run daily.
The model accuracy js acceptable, but the company anticipates a continuous increase in the size of the training data and a need to update the model on an hourly, rather than a daily, basis. The company also wants to minimize coding effort and infrastructure changes
What should the Machine Learning Specialist do to the training solution to allow it to scale for future demand?
A machine learning specialist is developing a proof of concept for government users whose primary concern is security. The specialist is using Amazon SageMaker to train a convolutional neural network (CNN) model for a photo classifier application. The specialist wants to protect the data so that it cannot be accessed and transferred to a remote host by malicious code accidentally installed on the training container.
Which action will provide the MOST secure protection?
Given the following confusion matrix for a movie classification model, what is the true class frequency for Romance and the predicted class frequency for Adventure?
A Machine Learning Specialist built an image classification deep learning model. However the Specialist ran into an overfitting problem in which the training and testing accuracies were 99% and 75%r respectively.
How should the Specialist address this issue and what is the reason behind it?
A law firm handles thousands of contracts every day. Every contract must be signed. Currently, a lawyer manually checks all contracts for signatures.
The law firm is developing a machine learning (ML) solution to automate signature detection for each contract. The ML solution must also provide a confidence score for each contract page.
Which Amazon Textract API action can the law firm use to generate a confidence score for each page of each contract?
A pharmaceutical company performs periodic audits of clinical trial sites to quickly resolve critical findings. The company stores audit documents in text format. Auditors have requested help from a data science team to quickly analyze the documents. The auditors need to discover the 10 main topics within the documents to prioritize and distribute the review work among the auditing team members. Documents that describe adverse events must receive the highest priority.
A data scientist will use statistical modeling to discover abstract topics and to provide a list of the top words for each category to help the auditors assess the relevance of the topic.
Which algorithms are best suited to this scenario? (Choose two.)
A Machine Learning Specialist is applying a linear least squares regression model to a dataset with 1 000 records and 50 features Prior to training, the ML Specialist notices that two features are perfectly linearly dependent
Why could this be an issue for the linear least squares regression model?
A Data Scientist wants to gain real-time insights into a data stream of GZIP files. Which solution would allow the use of SQL to query the stream with the LEAST latency?
A Machine Learning Specialist is building a model to predict future employment rates based on a wide range of economic factors While exploring the data, the Specialist notices that the magnitude of the input features vary greatly The Specialist does not want variables with a larger magnitude to dominate the model
What should the Specialist do to prepare the data for model training'?
A retail company is selling products through a global online marketplace. The company wants to use machine learning (ML) to analyze customer feedback and identify specific areas for improvement. A developer has built a tool that collects customer reviews from the online marketplace and stores them in an Amazon S3 bucket. This process yields a dataset of 40 reviews. A data scientist building the ML models must identify additional sources of data to increase the size of the dataset.
Which data sources should the data scientist use to augment the dataset of reviews? (Choose three.)
A company has set up and deployed its machine learning (ML) model into production with an endpoint using Amazon SageMaker hosting services. The ML team has configured automatic scaling for its SageMaker instances to support workload changes. During testing, the team notices that additional instances are being launched before the new instances are ready. This behavior needs to change as soon as possible.
How can the ML team solve this issue?
A retail company intends to use machine learning to categorize new products A labeled dataset of current products was provided to the Data Science team The dataset includes 1 200 products The labeled dataset has 15 features for each product such as title dimensions, weight, and price Each product is labeled as belonging to one of six categories such as books, games, electronics, and movies.
Which model should be used for categorizing new products using the provided dataset for training?
A data scientist is building a linear regression model. The scientist inspects the dataset and notices that the mode of the distribution is lower than the median, and the median is lower than the mean.
Which data transformation will give the data scientist the ability to apply a linear regression model?
A machine learning (ML) specialist is using the Amazon SageMaker DeepAR forecasting algorithm to train a model on CPU-based Amazon EC2 On-Demand instances. The model currently takes multiple hours to train. The ML specialist wants to decrease the training time of the model.
Which approaches will meet this requirement7 (SELECT TWO )
An employee found a video clip with audio on a company's social media feed. The language used in the video is Spanish. English is the employee's first language, and they do not understand Spanish. The employee wants to do a sentiment analysis.
What combination of services is the MOST efficient to accomplish the task?
A company offers an online shopping service to its customers. The company wants to enhance the site’s security by requesting additional information when customers access the site from locations that are different from their normal location. The company wants to update the process to call a machine learning (ML) model to determine when additional information should be requested.
The company has several terabytes of data from its existing ecommerce web servers containing the source IP addresses for each request made to the web server. For authenticated requests, the records also contain the login name of the requesting user.
Which approach should an ML specialist take to implement the new security feature in the web application?
A bank has collected customer data for 10 years in CSV format. The bank stores the data in an on-premises server. A data science team wants to use Amazon SageMaker to build and train a machine learning (ML) model to predict churn probability. The team will use the historical data. The data scientists want to perform data transformations quickly and to generate data insights before the team builds a model for production.
Which solution will meet these requirements with the LEAST development effort?
A university wants to develop a targeted recruitment strategy to increase new student enrollment. A data scientist gathers information about the academic performance history of students. The data scientist wants to use the data to build student profiles. The university will use the profiles to direct resources to recruit students who are likely to enroll in the university.
Which combination of steps should the data scientist take to predict whether a particular student applicant is likely to enroll in the university? (Select TWO)
A Machine Learning Specialist is developing a custom video recommendation model for an application The dataset used to train this model is very large with millions of data points and is hosted in an Amazon S3 bucket The Specialist wants to avoid loading all of this data onto an Amazon SageMaker notebook instance because it would take hours to move and will exceed the attached 5 GB Amazon EBS volume on the notebook instance.
Which approach allows the Specialist to use all the data to train the model?
During mini-batch training of a neural network for a classification problem, a Data Scientist notices that training accuracy oscillates What is the MOST likely cause of this issue?
A Machine Learning Specialist at a company sensitive to security is preparing a dataset for model training. The dataset is stored in Amazon S3 and contains Personally Identifiable Information (Pll). The dataset:
* Must be accessible from a VPC only.
* Must not traverse the public internet.
How can these requirements be satisfied?
A company decides to use Amazon SageMaker to develop machine learning (ML) models. The company will host SageMaker notebook instances in a VPC. The company stores training data in an Amazon S3 bucket. Company security policy states that SageMaker notebook instances must not have internet connectivity.
Which solution will meet the company's security requirements?
A company wants to use machine learning (ML) to improve its customer churn prediction model. The company stores data in an Amazon Redshift data warehouse.
A data science team wants to use Amazon Redshift machine learning (Amazon Redshift ML) to build a model and run predictions for new data directly within the data warehouse.
Which combination of steps should the company take to use Amazon Redshift ML to meet these requirements? (Select THREE.)
A logistics company needs a forecast model to predict next month's inventory requirements for a single item in 10 warehouses. A machine learning specialist uses Amazon Forecast to develop a forecast model from 3 years of monthly data. There is no missing data. The specialist selects the DeepAR+ algorithm to train a predictor. The predictor means absolute percentage error (MAPE) is much larger than the MAPE produced by the current human forecasters.
Which changes to the CreatePredictor API call could improve the MAPE? (Choose two.)
A Machine Learning Specialist is designing a scalable data storage solution for Amazon SageMaker. There is an existing TensorFlow-based model implemented as a train.py script that relies on static training data that is currently stored as TFRecords.
Which method of providing training data to Amazon SageMaker would meet the business requirements with the LEAST development overhead?
A data scientist has a dataset of machine part images stored in Amazon Elastic File System (Amazon EFS). The data scientist needs to use Amazon SageMaker to create and train an image classification machine learning model based on this dataset. Because of budget and time constraints, management wants the data scientist to create and train a model with the least number of steps and integration work required.
How should the data scientist meet these requirements?
A library is developing an automatic book-borrowing system that uses Amazon Rekognition. Images of library members’ faces are stored in an Amazon S3 bucket. When members borrow books, the Amazon Rekognition CompareFaces API operation compares real faces against the stored faces in Amazon S3.
The library needs to improve security by making sure that images are encrypted at rest. Also, when the images are used with Amazon Rekognition. they need to be encrypted in transit. The library also must ensure that the images are not used to improve Amazon Rekognition as a service.
How should a machine learning specialist architect the solution to satisfy these requirements?
A company is building a line-counting application for use in a quick-service restaurant. The company wants to use video cameras pointed at the line of customers at a given register to measure how many people are in line and deliver notifications to managers if the line grows too long. The restaurant locations have limited bandwidth for connections to external services and cannot accommodate multiple video streams without impacting other operations.
Which solution should a machine learning specialist implement to meet these requirements?
A Machine Learning Specialist is training a model to identify the make and model of vehicles in images The Specialist wants to use transfer learning and an existing model trained on images of general objects The Specialist collated a large custom dataset of pictures containing different vehicle makes and models.
What should the Specialist do to initialize the model to re-train it with the custom data?
A telecommunications company is developing a mobile app for its customers. The company is using an Amazon SageMaker hosted endpoint for machine learning model inferences.
Developers want to introduce a new version of the model for a limited number of users who subscribed to a preview feature of the app. After the new version of the model is tested as a preview, developers will evaluate its accuracy. If a new version of the model has better accuracy, developers need to be able to gradually release the new version for all users over a fixed period of time.
How can the company implement the testing model with the LEAST amount of operational overhead?
A credit card company wants to identify fraudulent transactions in real time. A data scientist builds a machine learning model for this purpose. The transactional data is captured and stored in Amazon S3. The historic data is already labeled with two classes: fraud (positive) and fair transactions (negative). The data scientist removes all the missing data and builds a classifier by using the XGBoost algorithm in Amazon SageMaker. The model produces the following results:
• True positive rate (TPR): 0.700
• False negative rate (FNR): 0.300
• True negative rate (TNR): 0.977
• False positive rate (FPR): 0.023
• Overall accuracy: 0.949
Which solution should the data scientist use to improve the performance of the model?
A machine learning (ML) specialist is administering a production Amazon SageMaker endpoint with model monitoring configured. Amazon SageMaker Model Monitor detects violations on the SageMaker endpoint, so the ML specialist retrains the model with the latest dataset. This dataset is statistically representative of the current production traffic. The ML specialist notices that even after deploying the new SageMaker model and running the first monitoring job, the SageMaker endpoint still has violations.
What should the ML specialist do to resolve the violations?
A Machine Learning Specialist deployed a model that provides product recommendations on a company's website Initially, the model was performing very well and resulted in customers buying more products on average However within the past few months the Specialist has noticed that the effect of product recommendations has diminished and customers are starting to return to their original habits of spending less The Specialist is unsure of what happened, as the model has not changed from its initial deployment over a year ago
Which method should the Specialist try to improve model performance?
A bank's Machine Learning team is developing an approach for credit card fraud detection The company has a large dataset of historical data labeled as fraudulent The goal is to build a model to take the information from new transactions and predict whether each transaction is fraudulent or not
Which built-in Amazon SageMaker machine learning algorithm should be used for modeling this problem?
A company is setting up an Amazon SageMaker environment. The corporate data security policy does not allow communication over the internet.
How can the company enable the Amazon SageMaker service without enabling direct internet access to Amazon SageMaker notebook instances?
A Data Scientist needs to create a serverless ingestion and analytics solution for high-velocity, real-time streaming data.
The ingestion process must buffer and convert incoming records from JSON to a query-optimized, columnar format without data loss. The output datastore must be highly available, and Analysts must be able to run SQL queries against the data and connect to existing business intelligence dashboards.
Which solution should the Data Scientist build to satisfy the requirements?
A retail company uses a machine learning (ML) model for daily sales forecasting. The company’s brand manager reports that the model has provided inaccurate results for the past 3 weeks.
At the end of each day, an AWS Glue job consolidates the input data that is used for the forecasting with the actual daily sales data and the predictions of the model. The AWS Glue job stores the data in Amazon S3. The company’s ML team is using an Amazon SageMaker Studio notebook to gain an understanding about the source of the model's inaccuracies.
What should the ML team do on the SageMaker Studio notebook to visualize the model's degradation MOST accurately?
A company has raw user and transaction data stored in AmazonS3 a MySQL database, and Amazon RedShift A Data Scientist needs to perform an analysis by joining the three datasets from Amazon S3, MySQL, and Amazon RedShift, and then calculating the average-of a few selected columns from the joined data
Which AWS service should the Data Scientist use?
A company has video feeds and images of a subway train station. The company wants to create a deep learning model that will alert the station manager if any passenger crosses the yellow safety line when there is no train in the station. The alert will be based on the video feeds. The company wants the model to detect the yellow line, the passengers who cross the yellow line, and the trains in the video feeds. This task requires labeling. The video data must remain confidential.
A data scientist creates a bounding box to label the sample data and uses an object detection model. However, the object detection model cannot clearly demarcate the yellow line, the passengers who cross the yellow line, and the trains.
Which labeling approach will help the company improve this model?
A Machine Learning Specialist has completed a proof of concept for a company using a small data sample and now the Specialist is ready to implement an end-to-end solution in AWS using Amazon SageMaker The historical training data is stored in Amazon RDS
Which approach should the Specialist use for training a model using that data?
A bank wants to launch a low-rate credit promotion. The bank is located in a town that recently experienced economic hardship. Only some of the bank's customers were affected by the crisis, so the bank's credit team must identify which customers to target with the promotion. However, the credit team wants to make sure that loyal customers' full credit history is considered when the decision is made.
The bank's data science team developed a model that classifies account transactions and understands credit eligibility. The data science team used the XGBoost algorithm to train the model. The team used 7 years of bank transaction historical data for training and hyperparameter tuning over the course of several days.
The accuracy of the model is sufficient, but the credit team is struggling to explain accurately why the model denies credit to some customers. The credit team has almost no skill in data science.
What should the data science team do to address this issue in the MOST operationally efficient manner?
A manufacturer is operating a large number of factories with a complex supply chain relationship where unexpected downtime of a machine can cause production to stop at several factories. A data scientist wants to analyze sensor data from the factories to identify equipment in need of preemptive maintenance and then dispatch a service team to prevent unplanned downtime. The sensor readings from a single machine can include up to 200 data points including temperatures, voltages, vibrations, RPMs, and pressure readings.
To collect this sensor data, the manufacturer deployed Wi-Fi and LANs across the factories. Even though many factory locations do not have reliable or high-speed internet connectivity, the manufacturer would like to maintain near-real-time inference capabilities.
Which deployment architecture for the model will address these business requirements?
A sports analytics company is providing services at a marathon. Each runner in the marathon will have their race ID printed as text on the front of their shirt. The company needs to extract race IDs from images of the runners.
Which solution will meet these requirements with the LEAST operational overhead?
A company sells thousands of products on a public website and wants to automatically identify products with potential durability problems. The company has 1.000 reviews with date, star rating, review text, review summary, and customer email fields, but many reviews are incomplete and have empty fields. Each review has already been labeled with the correct durability result.
A machine learning specialist must train a model to identify reviews expressing concerns over product durability. The first model needs to be trained and ready to review in 2 days.
What is the MOST direct approach to solve this problem within 2 days?
A machine learning (ML) specialist uploads a dataset to an Amazon S3 bucket that is protected by server-side encryption with AWS KMS keys (SSE-KMS). The ML specialist needs to ensure that an Amazon SageMaker notebook instance can read the dataset that is in Amazon S3.
Which solution will meet these requirements?
A company is creating an application to identify, count, and classify animal images that are uploaded to the company’s website. The company is using the Amazon SageMaker image classification algorithm with an ImageNetV2 convolutional neural network (CNN). The solution works well for most animal images but does not recognize many animal species that are less common.
The company obtains 10,000 labeled images of less common animal species and stores the images in Amazon S3. A machine learning (ML) engineer needs to incorporate the images into the model by using Pipe mode in SageMaker.
Which combination of steps should the ML engineer take to train the model? (Choose two.)
A beauty supply store wants to understand some characteristics of visitors to the store. The store has security video recordings from the past several years. The store wants to generate a report of hourly visitors from the recordings. The report should group visitors by hair style and hair color.
Which solution will meet these requirements with the LEAST amount of effort?
A car company is developing a machine learning solution to detect whether a car is present in an image. The image dataset consists of one million images. Each image in the dataset is 200 pixels in height by 200 pixels in width. Each image is labeled as either having a car or not having a car.
Which architecture is MOST likely to produce a model that detects whether a car is present in an image with the highest accuracy?
A Machine Learning Specialist needs to move and transform data in preparation for training Some of the data needs to be processed in near-real time and other data can be moved hourly There are existing Amazon EMR MapReduce jobs to clean and feature engineering to perform on the data
Which of the following services can feed data to the MapReduce jobs? (Select TWO )
A network security vendor needs to ingest telemetry data from thousands of endpoints that run all over the world. The data is transmitted every 30 seconds in the form of records that contain 50 fields. Each record is up to 1 KB in size. The security vendor uses Amazon Kinesis Data Streams to ingest the data. The vendor requires hourly summaries of the records that Kinesis Data Streams ingests. The vendor will use Amazon Athena to query the records and to generate the summaries. The Athena queries will target 7 to 12 of the available data fields.
Which solution will meet these requirements with the LEAST amount of customization to transform and store the ingested data?
A data scientist has been running an Amazon SageMaker notebook instance for a few weeks. During this time, a new version of Jupyter Notebook was released along with additional software updates. The security team mandates that all running SageMaker notebook instances use the latest security and software updates provided by SageMaker.
How can the data scientist meet these requirements?
A data scientist stores financial datasets in Amazon S3. The data scientist uses Amazon Athena to query the datasets by using SQL.
The data scientist uses Amazon SageMaker to deploy a machine learning (ML) model. The data scientist wants to obtain inferences from the model at the SageMaker endpoint However, when the data …. ntist attempts to invoke the SageMaker endpoint, the data scientist receives SOL statement failures The data scientist's 1AM user is currently unable to invoke the SageMaker endpoint
Which combination of actions will give the data scientist's 1AM user the ability to invoke the SageMaker endpoint? (Select THREE.)
A Data Science team is designing a dataset repository where it will store a large amount of training data commonly used in its machine learning models. As Data Scientists may create an arbitrary number of new datasets every day the solution has to scale automatically and be cost-effective. Also, it must be possible to explore the data using SQL.
Which storage scheme is MOST adapted to this scenario?
A retail company collects customer comments about its products from social media, the company website, and customer call logs. A team of data scientists and engineers wants to find common topics and determine which products the customers are referring to in their comments. The team is using natural language processing (NLP) to build a model to help with this classification.
Each product can be classified into multiple categories that the company defines. These categories are related but are not mutually exclusive. For example, if there is mention of "Sample Yogurt" in the document of customer comments, then "Sample Yogurt" should be classified as "yogurt," "snack," and "dairy product."
The team is using Amazon Comprehend to train the model and must complete the project as soon as possible.
Which functionality of Amazon Comprehend should the team use to meet these requirements?
A Machine Learning Specialist wants to determine the appropriate SageMaker Variant Invocations Per Instance setting for an endpoint automatic scaling configuration. The Specialist has performed a load test on a single instance and determined that peak requests per second (RPS) without service degradation is about 20 RPS As this is the first deployment, the Specialist intends to set the invocation safety factor to 0 5
Based on the stated parameters and given that the invocations per instance setting is measured on a per-minute basis, what should the Specialist set as the sageMaker variant invocations Per instance setting?
A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.
Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.
Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)
A Data Scientist needs to migrate an existing on-premises ETL process to the cloud The current process runs at regular time intervals and uses PySpark to combine and format multiple large data sources into a single consolidated output for downstream processing
The Data Scientist has been given the following requirements for the cloud solution
* Combine multiple data sources
* Reuse existing PySpark logic
* Run the solution on the existing schedule
* Minimize the number of servers that will need to be managed
Which architecture should the Data Scientist use to build this solution?
A Machine Learning team runs its own training algorithm on Amazon SageMaker. The training algorithm
requires external assets. The team needs to submit both its own algorithm code and algorithm-specific
parameters to Amazon SageMaker.
What combination of services should the team use to build a custom algorithm in Amazon SageMaker?
(Choose two.)
A company uses camera images of the tops of items displayed on store shelves to determine which items
were removed and which ones still remain. After several hours of data labeling, the company has a total of
1,000 hand-labeled images covering 10 distinct items. The training results were poor.
Which machine learning approach fulfills the company’s long-term needs?
A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena The dataset contains more than 800.000 records stored as plaintext CSV files Each record contains 200 columns and is approximately 1 5 MB in size Most queries will span 5 to 10 columns only
How should the Machine Learning Specialist transform the dataset to minimize query runtime?
An agricultural company is interested in using machine learning to detect specific types of weeds in a 100-acre grassland field. Currently, the company uses tractor-mounted cameras to capture multiple images of the field as 10 × 10 grids. The company also has a large training dataset that consists of annotated images of popular weed classes like broadleaf and non-broadleaf docks.
The company wants to build a weed detection model that will detect specific types of weeds and the location of each type within the field. Once the model is ready, it will be hosted on Amazon SageMaker endpoints. The model will perform real-time inferencing using the images captured by the cameras.
Which approach should a Machine Learning Specialist take to obtain accurate predictions?
A company wants to segment a large group of customers into subgroups based on shared characteristics. The company’s data scientist is planning to use the Amazon SageMaker built-in k-means clustering algorithm for this task. The data scientist needs to determine the optimal number of subgroups (k) to use.
Which data visualization approach will MOST accurately determine the optimal value of k?
A car company has dealership locations in multiple cities. The company uses a machine learning (ML) recommendation system to market cars to its customers.
An ML engineer trained the ML recommendation model on a dataset that includes multiple attributes about each car. The dataset includes attributes such as car brand, car type, fuel efficiency, and price.
The ML engineer uses Amazon SageMaker Data Wrangler to analyze and visualize data. The ML engineer needs to identify the distribution of car prices for a specific type of car.
Which type of visualization should the ML engineer use to meet these requirements?
A machine learning specialist needs to analyze comments on a news website with users across the globe. The specialist must find the most discussed topics in the comments that are in either English or Spanish.
What steps could be used to accomplish this task? (Choose two.)
A Machine Learning Specialist is assigned to a Fraud Detection team and must tune an XGBoost model, which is working appropriately for test data. However, with unknown data, it is not working as expected. The existing parameters are provided as follows.
Which parameter tuning guidelines should the Specialist follow to avoid overfitting?
An insurance company is developing a new device for vehicles that uses a camera to observe drivers' behavior and alert them when they appear distracted The company created approximately 10,000 training images in a controlled environment that a Machine Learning Specialist will use to train and evaluate machine learning models
During the model evaluation the Specialist notices that the training error rate diminishes faster as the number of epochs increases and the model is not accurately inferring on the unseen test images
Which of the following should be used to resolve this issue? (Select TWO)
A Machine Learning Specialist needs to create a data repository to hold a large amount of time-based training data for a new model. In the source system, new files are added every hour Throughout a single 24-hour period, the volume of hourly updates will change significantly. The Specialist always wants to train on the last 24 hours of the data
Which type of data repository is the MOST cost-effective solution?
A Machine Learning Specialist is working for a credit card processing company and receives an unbalanced dataset containing credit card transactions. It contains 99,000 valid transactions and 1,000 fraudulent transactions The Specialist is asked to score a model that was run against the dataset The Specialist has been advised that identifying valid transactions is equally as important as identifying fraudulent transactions
What metric is BEST suited to score the model?
A Machine Learning Specialist is preparing data for training on Amazon SageMaker The Specialist is transformed into a numpy .array, which appears to be negatively affecting the speed of the training
What should the Specialist do to optimize the data for training on SageMaker'?
A machine learning (ML) specialist uploads 5 TB of data to an Amazon SageMaker Studio environment. The ML specialist performs initial data cleansing. Before the ML specialist begins to train a model, the ML specialist needs to create and view an analysis report that details potential bias in the uploaded data.
Which combination of actions will meet these requirements with the LEAST operational overhead? (Choose two.)
A retail chain has been ingesting purchasing records from its network of 20,000 stores to Amazon S3 using Amazon Kinesis Data Firehose To support training an improved machine learning model, training records will require new but simple transformations, and some attributes will be combined The model needs lo be retrained daily
Given the large number of stores and the legacy data ingestion, which change will require the LEAST amount of development effort?
A Machine Learning Specialist is developing a daily ETL workflow containing multiple ETL jobs The workflow consists of the following processes
* Start the workflow as soon as data is uploaded to Amazon S3
* When all the datasets are available in Amazon S3, start an ETL job to join the uploaded datasets with multiple terabyte-sized datasets already stored in Amazon S3
* Store the results of joining datasets in Amazon S3
* If one of the jobs fails, send a notification to the Administrator
Which configuration will meet these requirements?
A company is building a new supervised classification model in an AWS environment. The company's data science team notices that the dataset has a large quantity of variables Ail the variables are numeric. The model accuracy for training and validation is low. The model's processing time is affected by high latency The data science team needs to increase the accuracy of the model and decrease the processing.
How it should the data science team do to meet these requirements?
AWS Certified Specialty | MLS-C01 Questions Answers | MLS-C01 Test Prep | AWS Certified Machine Learning - Specialty Questions PDF | MLS-C01 Online Exam | MLS-C01 Practice Test | MLS-C01 PDF | MLS-C01 Test Questions | MLS-C01 Study Material | MLS-C01 Exam Preparation | MLS-C01 Valid Dumps | MLS-C01 Real Questions | AWS Certified Specialty MLS-C01 Exam Questions