Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: cramtreat

Databricks-Certified-Professional-Data-Engineer Databricks Certified Data Engineer Professional Exam Questions and Answers

Questions 4

What is the first of a Databricks Python notebook when viewed in a text editor?

Options:

A.

%python

B.

% Databricks notebook source

C.

-- Databricks notebook source

D.

//Databricks notebook source

Buy Now
Questions 5

The data governance team is reviewing code used for deleting records for compliance with GDPR. They note the following logic is used to delete records from the Delta Lake table named users.

Assuming that user_id is a unique identifying key and that delete_requests contains all users that have requested deletion, which statement describes whether successfully executing the above logic guarantees that the records to be deleted are no longer accessible and why?

Options:

A.

Yes; Delta Lake ACID guarantees provide assurance that the delete command succeeded fully and permanently purged these records.

B.

No; the Delta cache may return records from previous versions of the table until the cluster is restarted.

C.

Yes; the Delta cache immediately updates to reflect the latest data files recorded to disk.

D.

No; the Delta Lake delete command only provides ACID guarantees when combined with the merge into command.

E.

No; files containing deleted records may still be accessible with time travel until a vacuum command is used to remove invalidated data files.

Buy Now
Questions 6

A data engineer needs to capture pipeline settings from an existing in the workspace, and use them to create and version a JSON file to create a new pipeline.

Which command should the data engineer enter in a web terminal configured with the Databricks CLI?

Options:

A.

Use the get command to capture the settings for the existing pipeline; remove the pipeline_id and rename the pipeline; use this in a create command

B.

Stop the existing pipeline; use the returned settings in a reset command

C.

Use the alone command to create a copy of an existing pipeline; use the get JSON command to get the pipeline definition; save this to git

D.

Use list pipelines to get the specs for all pipelines; get the pipeline spec from the return results parse and use this to create a pipeline

Buy Now
Questions 7

A team of data engineer are adding tables to a DLT pipeline that contain repetitive expectations for many of the same data quality checks.

One member of the team suggests reusing these data quality rules across all tables defined for this pipeline.

What approach would allow them to do this?

Options:

A.

Maintain data quality rules in a Delta table outside of this pipeline’s target schema, providing the schema name as a pipeline parameter.

B.

Use global Python variables to make expectations visible across DLT notebooks included in the same pipeline.

C.

Add data quality constraints to tables in this pipeline using an external job with access to pipeline configuration files.

D.

Maintain data quality rules in a separate Databricks notebook that each DLT notebook of file.

Buy Now
Questions 8

An analytics team wants to run a short-term experiment in Databricks SQL on the customer transactions Delta table (about 20 billion records) created by the data engineering team. Which strategy should the data engineering team use to ensure minimal downtime and no impact on the ongoing ETL processes?

Options:

A.

Create a new table for the analytics team using a CTAS statement.

B.

Deep clone the table for the analytics team.

C.

Give the analytics team direct access to the production table.

D.

Shallow clone the table for the analytics team.

Buy Now
Questions 9

A junior data engineer has been asked to develop a streaming data pipeline with a grouped aggregation using DataFrame df. The pipeline needs to calculate the average humidity and average temperature for each non-overlapping five-minute interval. Events are recorded once per minute per device.

Streaming DataFrame df has the following schema:

"device_id INT, event_time TIMESTAMP, temp FLOAT, humidity FLOAT"

Code block:

Choose the response that correctly fills in the blank within the code block to complete this task.

Options:

A.

to_interval("event_time", "5 minutes").alias("time")

B.

window("event_time", "5 minutes").alias("time")

C.

"event_time"

D.

window("event_time", "10 minutes").alias("time")

E.

lag("event_time", "10 minutes").alias("time")

Buy Now
Questions 10

A table named user_ltv is being used to create a view that will be used by data analysis on various teams. Users in the workspace are configured into groups, which are used for setting up data access using ACLs.

The user_ltv table has the following schema:

An analyze who is not a member of the auditing group executing the following query:

Which result will be returned by this query?

Options:

A.

All columns will be displayed normally for those records that have an age greater than 18; records not meeting this condition will be omitted.

B.

All columns will be displayed normally for those records that have an age greater than 17; records not meeting this condition will be omitted.

C.

All age values less than 18 will be returned as null values all other columns will be returned with the values in user_ltv.

D.

All records from all columns will be displayed with the values in user_ltv.

Buy Now
Questions 11

A distributed team of data analysts share computing resources on an interactive cluster with autoscaling configured. In order to better manage costs and query throughput, the workspace administrator is hoping to evaluate whether cluster upscaling is caused by many concurrent users or resource-intensive queries.

In which location can one review the timeline for cluster resizing events?

Options:

A.

Workspace audit logs

B.

Driver's log file

C.

Ganglia

D.

Cluster Event Log

E.

Executor's log file

Buy Now
Questions 12

The data engineering team is migrating an enterprise system with thousands of tables and views into the Lakehouse. They plan to implement the target architecture using a series of bronze, silver, and gold tables. Bronze tables will almost exclusively be used by production data engineering workloads, while silver tables will be used to support both data engineering and machine learning workloads. Gold tables will largely serve business intelligence and reporting purposes. While personal identifying information (PII) exists in all tiers of data, pseudonymization and anonymization rules are in place for all data at the silver and gold levels.

The organization is interested in reducing security concerns while maximizing the ability to collaborate across diverse teams.

Which statement exemplifies best practices for implementing this system?

Options:

A.

Isolating tables in separate databases based on data quality tiers allows for easy permissions management through database ACLs and allows physical separation of default storage locations for managed tables.

B.

Because databases on Databricks are merely a logical construct, choices around database organization do not impact security or discoverability in the Lakehouse.

C.

Storinq all production tables in a single database provides a unified view of all data assets available throughout the Lakehouse, simplifying discoverability by granting all users view privileges on this database.

D.

Working in the default Databricks database provides the greatest security when working with managed tables, as these will be created in the DBFS root.

E.

Because all tables must live in the same storage containers used for the database they're created in, organizations should be prepared to create between dozens and thousands of databases depending on their data isolation requirements.

Buy Now
Questions 13

A junior data engineer is working to implement logic for a Lakehouse table named silver_device_recordings. The source data contains 100 unique fields in a highly nested JSON structure.

The silver_device_recordings table will be used downstream to power several production monitoring dashboards and a production model. At present, 45 of the 100 fields are being used in at least one of these applications.

The data engineer is trying to determine the best approach for dealing with schema declaration given the highly-nested structure of the data and the numerous fields.

Which of the following accurately presents information about Delta Lake and Databricks that may impact their decision-making process?

Options:

A.

The Tungsten encoding used by Databricks is optimized for storing string data; newly-added native support for querying JSON strings means that string types are always most efficient.

B.

Because Delta Lake uses Parquet for data storage, data types can be easily evolved by just modifying file footer information in place.

C.

Human labor in writing code is the largest cost associated with data engineering workloads; as such, automating table declaration logic should be a priority in all migration workloads.

D.

Because Databricks will infer schema using types that allow all observed data to be processed, setting types manually provides greater assurance of data quality enforcement.

E.

Schema inference and evolution on .Databricks ensure that inferred types will always accurately match the data types used by downstream systems.

Buy Now
Questions 14

A data ingestion task requires a one-TB JSON dataset to be written out to Parquet with a target part-file size of 512 MB. Because Parquet is being used instead of Delta Lake, built-in file-sizing features such as Auto-Optimize & Auto-Compaction cannot be used.

Which strategy will yield the best performance without shuffling data?

Options:

A.

Set spark.sql.files.maxPartitionBytes to 512 MB, ingest the data, execute the narrow transformations, and then write to parquet.

B.

Set spark.sql.shuffle.partitions to 2,048 partitions (1TB*1024*1024/512), ingest the data, execute the narrow transformations, optimize the data by sorting it (which automatically repartitions the data), and then write to parquet.

C.

Set spark.sql.adaptive.advisoryPartitionSizeInBytes to 512 MB bytes, ingest the data, execute the narrow transformations, coalesce to 2,048 partitions (1TB*1024*1024/512), and then write to parquet.

D.

Ingest the data, execute the narrow transformations, repartition to 2,048 partitions (1TB* 1024*1024/512), and then write to parquet.

E.

Set spark.sql.shuffle.partitions to 512, ingest the data, execute the narrow transformations, and then write to parquet.

Buy Now
Questions 15

A junior data engineer has manually configured a series of jobs using the Databricks Jobs UI. Upon reviewing their work, the engineer realizes that they are listed as the "Owner" for each job. They attempt to transfer "Owner" privileges to the "DevOps" group, but cannot successfully accomplish this task.

Which statement explains what is preventing this privilege transfer?

Options:

A.

Databricks jobs must have exactly one owner; "Owner" privileges cannot be assigned to a group.

B.

The creator of a Databricks job will always have "Owner" privileges; this configuration cannot be changed.

C.

Other than the default "admins" group, only individual users can be granted privileges on jobs.

D.

A user can only transfer job ownership to a group if they are also a member of that group.

E.

Only workspace administrators can grant "Owner" privileges to a group.

Buy Now
Questions 16

Which statement describes the correct use of pyspark.sql.functions.broadcast?

Options:

A.

It marks a column as having low enough cardinality to properly map distinct values to available partitions, allowing a broadcast join.

B.

It marks a column as small enough to store in memory on all executors, allowing a broadcast join.

C.

It caches a copy of the indicated table on attached storage volumes for all active clusters within a Databricks workspace.

D.

It marks a DataFrame as small enough to store in memory on all executors, allowing a broadcast join.

E.

It caches a copy of the indicated table on all nodes in the cluster for use in all future queries during the cluster lifetime.

Buy Now
Questions 17

The downstream consumers of a Delta Lake table have been complaining about data quality issues impacting performance in their applications. Specifically, they have complained that invalid latitude and longitude values in the activity_details table have been breaking their ability to use other geolocation processes.

A junior engineer has written the following code to add CHECK constraints to the Delta Lake table:

A senior engineer has confirmed the above logic is correct and the valid ranges for latitude and longitude are provided, but the code fails when executed.

Which statement explains the cause of this failure?

Options:

A.

Because another team uses this table to support a frequently running application, two-phase locking is preventing the operation from committing.

B.

The activity details table already exists; CHECK constraints can only be added during initial table creation.

C.

The activity details table already contains records that violate the constraints; all existing data must pass CHECK constraints in order to add them to an existing table.

D.

The activity details table already contains records; CHECK constraints can only be added prior to inserting values into a table.

E.

The current table schema does not contain the field valid coordinates; schema evolution will need to be enabled before altering the table to add a constraint.

Buy Now
Questions 18

A data team's Structured Streaming job is configured to calculate running aggregates for item sales to update a downstream marketing dashboard. The marketing team has introduced a new field to track the number of times this promotion code is used for each item. A junior data engineer suggests updating the existing query as follows: Note that proposed changes are in bold.

Which step must also be completed to put the proposed query into production?

Options:

A.

Increase the shuffle partitions to account for additional aggregates

B.

Specify a new checkpointlocation

C.

Run REFRESH TABLE delta, /item_agg'

D.

Remove .option (mergeSchema', true') from the streaming write

Buy Now
Questions 19

Which statement describes Delta Lake Auto Compaction?

Options:

A.

An asynchronous job runs after the write completes to detect if files could be further compacted; if yes, an optimize job is executed toward a default of 1 GB.

B.

Before a Jobs cluster terminates, optimize is executed on all tables modified during the most recent job.

C.

Optimized writes use logical partitions instead of directory partitions; because partition boundaries are only represented in metadata, fewer small files are written.

D.

Data is queued in a messaging bus instead of committing data directly to memory; all data is committed from the messaging bus in one batch once the job is complete.

E.

An asynchronous job runs after the write completes to detect if files could be further compacted; if yes, an optimize job is executed toward a default of 128 MB.

Buy Now
Questions 20

A junior data engineer is migrating a workload from a relational database system to the Databricks Lakehouse. The source system uses a star schema, leveraging foreign key constrains and multi-table inserts to validate records on write.

Which consideration will impact the decisions made by the engineer while migrating this workload?

Options:

A.

All Delta Lake transactions are ACID compliance against a single table, and Databricks does not enforce foreign key constraints.

B.

Databricks only allows foreign key constraints on hashed identifiers, which avoid collisions in highly-parallel writes.

C.

Foreign keys must reference a primary key field; multi-table inserts must leverage Delta Lake's upsert functionality.

D.

Committing to multiple tables simultaneously requires taking out multiple table locks and can lead to a state of deadlock.

Buy Now
Questions 21

Which is a key benefit of an end-to-end test?

Options:

A.

It closely simulates real world usage of your application.

B.

It pinpoint errors in the building blocks of your application.

C.

It provides testing coverage for all code paths and branches.

D.

It makes it easier to automate your test suite

Buy Now
Questions 22

The DevOps team has configured a production workload as a collection of notebooks scheduled to run daily using the Jobs UI. A new data engineering hire is onboarding to the team and has requested access to one of these notebooks to review the production logic.

What are the maximum notebook permissions that can be granted to the user without allowing accidental changes to production code or data?

Options:

A.

Can Manage

B.

Can Edit

C.

No permissions

D.

Can Read

E.

Can Run

Buy Now
Questions 23

A data architect has designed a system in which two Structured Streaming jobs will concurrently write to a single bronze Delta table. Each job is subscribing to a different topic from an Apache Kafka source, but they will write data with the same schema. To keep the directory structure simple, a data engineer has decided to nest a checkpoint directory to be shared by both streams.

The proposed directory structure is displayed below:

Which statement describes whether this checkpoint directory structure is valid for the given scenario and why?

Options:

A.

No; Delta Lake manages streaming checkpoints in the transaction log.

B.

Yes; both of the streams can share a single checkpoint directory.

C.

No; only one stream can write to a Delta Lake table.

D.

Yes; Delta Lake supports infinite concurrent writers.

E.

No; each of the streams needs to have its own checkpoint directory.

Buy Now
Questions 24

When scheduling Structured Streaming jobs for production, which configuration automatically recovers from query failures and keeps costs low?

Options:

A.

Cluster: New Job Cluster;

Retries: Unlimited;

Maximum Concurrent Runs: Unlimited

B.

Cluster: New Job Cluster;

Retries: None;

Maximum Concurrent Runs: 1

C.

Cluster: Existing All-Purpose Cluster;

Retries: Unlimited;

Maximum Concurrent Runs: 1

D.

Cluster: New Job Cluster;

Retries: Unlimited;

Maximum Concurrent Runs: 1

E.

Cluster: Existing All-Purpose Cluster;

Retries: None;

Maximum Concurrent Runs: 1

Buy Now
Questions 25

A Databricks SQL dashboard has been configured to monitor the total number of records present in a collection of Delta Lake tables using the following query pattern:

SELECT COUNT (*) FROM table -

Which of the following describes how results are generated each time the dashboard is updated?

Options:

A.

The total count of rows is calculated by scanning all data files

B.

The total count of rows will be returned from cached results unless REFRESH is run

C.

The total count of records is calculated from the Delta transaction logs

D.

The total count of records is calculated from the parquet file metadata

E.

The total count of records is calculated from the Hive metastore

Buy Now
Questions 26

Which statement regarding stream-static joins and static Delta tables is correct?

Options:

A.

Each microbatch of a stream-static join will use the most recent version of the static Delta table as of each microbatch.

B.

Each microbatch of a stream-static join will use the most recent version of the static Delta table as of the job's initialization.

C.

The checkpoint directory will be used to track state information for the unique keys present in the join.

D.

Stream-static joins cannot use static Delta tables because of consistency issues.

E.

The checkpoint directory will be used to track updates to the static Delta table.

Buy Now
Questions 27

A production cluster has 3 executor nodes and uses the same virtual machine type for the driver and executor.

When evaluating the Ganglia Metrics for this cluster, which indicator would signal a bottleneck caused by code executing on the driver?

Options:

A.

The five Minute Load Average remains consistent/flat

B.

Bytes Received never exceeds 80 million bytes per second

C.

Total Disk Space remains constant

D.

Network I/O never spikes

E.

Overall cluster CPU utilization is around 25%

Buy Now
Questions 28

A Databricks job has been configured with 3 tasks, each of which is a Databricks notebook. Task A does not depend on other tasks. Tasks B and C run in parallel, with each having a serial dependency on task A.

If tasks A and B complete successfully but task C fails during a scheduled run, which statement describes the resulting state?

Options:

A.

All logic expressed in the notebook associated with tasks A and B will have been successfully completed; some operations in task C may have completed successfully.

B.

All logic expressed in the notebook associated with tasks A and B will have been successfully completed; any changes made in task C will be rolled back due to task failure.

C.

All logic expressed in the notebook associated with task A will have been successfully completed; tasks B and C will not commit any changes because of stage failure.

D.

Because all tasks are managed as a dependency graph, no changes will be committed to the Lakehouse until ail tasks have successfully been completed.

E.

Unless all tasks complete successfully, no changes will be committed to the Lakehouse; because task C failed, all commits will be rolled back automatically.

Buy Now
Questions 29

The business reporting tem requires that data for their dashboards be updated every hour. The total processing time for the pipeline that extracts transforms and load the data for their pipeline runs in 10 minutes.

Assuming normal operating conditions, which configuration will meet their service-level agreement requirements with the lowest cost?

Options:

A.

Schedule a jo to execute the pipeline once and hour on a dedicated interactive cluster.

B.

Schedule a Structured Streaming job with a trigger interval of 60 minutes.

C.

Schedule a job to execute the pipeline once hour on a new job cluster.

D.

Configure a job that executes every time new data lands in a given directory.

Buy Now
Questions 30

Incorporating unit tests into a PySpark application requires upfront attention to the design of your jobs, or a potentially significant refactoring of existing code.

Which statement describes a main benefit that offset this additional effort?

Options:

A.

Improves the quality of your data

B.

Validates a complete use case of your application

C.

Troubleshooting is easier since all steps are isolated and tested individually

D.

Yields faster deployment and execution times

E.

Ensures that all steps interact correctly to achieve the desired end result

Buy Now
Questions 31

Which distribution does Databricks support for installing custom Python code packages?

Options:

A.

sbt

B.

CRAN

C.

CRAM

D.

nom

E.

Wheels

F.

jars

Buy Now
Questions 32

Which statement characterizes the general programming model used by Spark Structured Streaming?

Options:

A.

Structured Streaming leverages the parallel processing of GPUs to achieve highly parallel data throughput.

B.

Structured Streaming is implemented as a messaging bus and is derived from Apache Kafka.

C.

Structured Streaming uses specialized hardware and I/O streams to achieve sub-second latency for data transfer.

D.

Structured Streaming models new data arriving in a data stream as new rows appended to an unbounded table.

E.

Structured Streaming relies on a distributed network of nodes that hold incremental state values for cached stages.

Buy Now
Questions 33

Which REST API call can be used to review the notebooks configured to run as tasks in a multi-task job?

Options:

A.

/jobs/runs/list

B.

/jobs/runs/get-output

C.

/jobs/runs/get

D.

/jobs/get

E.

/jobs/list

Buy Now
Questions 34

The data architect has mandated that all tables in the Lakehouse should be configured as external (also known as "unmanaged") Delta Lake tables.

Which approach will ensure that this requirement is met?

Options:

A.

When a database is being created, make sure that the LOCATION keyword is used.

B.

When configuring an external data warehouse for all table storage, leverage Databricks for all ELT.

C.

When data is saved to a table, make sure that a full file path is specified alongside the Delta format.

D.

When tables are created, make sure that the EXTERNAL keyword is used in the CREATE TABLE statement.

E.

When the workspace is being configured, make sure that external cloud object storage has been mounted.

Buy Now
Questions 35

The data engineering team maintains the following code:

Assuming that this code produces logically correct results and the data in the source tables has been de-duplicated and validated, which statement describes what will occur when this code is executed?

Options:

A.

A batch job will update the enriched_itemized_orders_by_account table, replacing only those rows that have different values than the current version of the table, using accountID as the primary key.

B.

The enriched_itemized_orders_by_account table will be overwritten using the current valid version of data in each of the three tables referenced in the join logic.

C.

An incremental job will leverage information in the state store to identify unjoined rows in the source tables and write these rows to the enriched_iteinized_orders_by_account table.

D.

An incremental job will detect if new rows have been written to any of the source tables; if new rows are detected, all results will be recalculated and used to overwrite the enriched_itemized_orders_by_account table.

E.

No computation will occur until enriched_itemized_orders_by_account is queried; upon query materialization, results will be calculated using the current valid version of data in each of the three tables referenced in the join logic.

Buy Now
Questions 36

The business reporting team requires that data for their dashboards be updated every hour. The total processing time for the pipeline that extracts, transforms, and loads the data for their pipeline runs in 10 minutes. Assuming normal operating conditions, which configuration will meet their service-level agreement requirements with the lowest cost?

Options:

A.

Schedule a job to execute the pipeline once an hour on a dedicated interactive cluster.

B.

Schedule a job to execute the pipeline once an hour on a new job cluster.

C.

Schedule a Structured Streaming job with a trigger interval of 60 minutes.

D.

Configure a job that executes every time new data lands in a given directory.

Buy Now
Questions 37

A CHECK constraint has been successfully added to the Delta table named activity_details using the following logic:

A batch job is attempting to insert new records to the table, including a record where latitude = 45.50 and longitude = 212.67.

Which statement describes the outcome of this batch insert?

Options:

A.

The write will fail when the violating record is reached; any records previously processed will be recorded to the target table.

B.

The write will fail completely because of the constraint violation and no records will be inserted into the target table.

C.

The write will insert all records except those that violate the table constraints; the violating records will be recorded to a quarantine table.

D.

The write will include all records in the target table; any violations will be indicated in the boolean column named valid_coordinates.

E.

The write will insert all records except those that violate the table constraints; the violating records will be reported in a warning log.

Buy Now
Questions 38

The data governance team has instituted a requirement that all tables containing Personal Identifiable Information (PH) must be clearly annotated. This includes adding column comments, table comments, and setting the custom table property "contains_pii" = true.

The following SQL DDL statement is executed to create a new table:

Which command allows manual confirmation that these three requirements have been met?

Options:

A.

DESCRIBE EXTENDED dev.pii test

B.

DESCRIBE DETAIL dev.pii test

C.

SHOW TBLPROPERTIES dev.pii test

D.

DESCRIBE HISTORY dev.pii test

E.

SHOW TABLES dev

Buy Now
Questions 39

An upstream system has been configured to pass the date for a given batch of data to the Databricks Jobs API as a parameter. The notebook to be scheduled will use this parameter to load data with the following code:

df = spark.read.format("parquet").load(f"/mnt/source/(date)")

Which code block should be used to create the date Python variable used in the above code block?

Options:

A.

date = spark.conf.get("date")

B.

input_dict = input()

date= input_dict["date"]

C.

import sys

date = sys.argv[1]

D.

date = dbutils.notebooks.getParam("date")

E.

dbutils.widgets.text("date", "null")

date = dbutils.widgets.get("date")

Buy Now
Questions 40

A data engineer is configuring a pipeline that will potentially see late-arriving, duplicate records.

In addition to de-duplicating records within the batch, which of the following approaches allows the data engineer to deduplicate data against previously processed records as it is inserted into a Delta table?

Options:

A.

Set the configuration delta.deduplicate = true.

B.

VACUUM the Delta table after each batch completes.

C.

Perform an insert-only merge with a matching condition on a unique key.

D.

Perform a full outer join on a unique key and overwrite existing data.

E.

Rely on Delta Lake schema enforcement to prevent duplicate records.

Buy Now
Exam Name: Databricks Certified Data Engineer Professional Exam
Last Update: Nov 18, 2025
Questions: 195
Databricks-Certified-Professional-Data-Engineer pdf

Databricks-Certified-Professional-Data-Engineer PDF

$29.75  $84.99
Databricks-Certified-Professional-Data-Engineer Engine

Databricks-Certified-Professional-Data-Engineer Testing Engine

$35  $99.99
Databricks-Certified-Professional-Data-Engineer PDF + Engine

Databricks-Certified-Professional-Data-Engineer PDF + Testing Engine

$47.25  $134.99