Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: cramtreat

Professional-Data-Engineer Google Professional Data Engineer Exam Questions and Answers

Questions 4

Your company is in a highly regulated industry. One of your requirements is to ensure individual users have access only to the minimum amount of information required to do their jobs. You want to enforce this requirement with Google BigQuery. Which three approaches can you take? (Choose three.)

Options:

A.

Disable writes to certain tables.

B.

Restrict access to tables by role.

C.

Ensure that the data is encrypted at all times.

D.

Restrict BigQuery API access to approved users.

E.

Segregate data across multiple tables or databases.

F.

Use Google Stackdriver Audit Logging to determine policy violations.

Buy Now
Questions 5

You are working on a sensitive project involving private user data. You have set up a project on Google Cloud Platform to house your work internally. An external consultant is going to assist with coding a complex transformation in a Google Cloud Dataflow pipeline for your project. How should you maintain users’ privacy?

Options:

A.

Grant the consultant the Viewer role on the project.

B.

Grant the consultant the Cloud Dataflow Developer role on the project.

C.

Create a service account and allow the consultant to log on with it.

D.

Create an anonymized sample of the data for the consultant to work with in a different project.

Buy Now
Questions 6

You are deploying a new storage system for your mobile application, which is a media streaming service. You decide the best fit is Google Cloud Datastore. You have entities with multiple properties, some of which can take on multiple values. For example, in the entity ‘Movie’ the property ‘actors’ and the property ‘tags’ have multiple values but the property ‘date released’ does not. A typical query would ask for all movies with actor= ordered by date_released or all movies with tag=Comedy ordered by date_released. How should you avoid a combinatorial explosion in the number of indexes?

Options:

A.

Option A

B.

Option B.

C.

Option C

D.

Option D

Buy Now
Questions 7

Your startup has never implemented a formal security policy. Currently, everyone in the company has access to the datasets stored in Google BigQuery. Teams have freedom to use the service as they see fit, and they have not documented their use cases. You have been asked to secure the data warehouse. You need to discover what everyone is doing. What should you do first?

Options:

A.

Use Google Stackdriver Audit Logs to review data access.

B.

Get the identity and access management IIAM) policy of each table

C.

Use Stackdriver Monitoring to see the usage of BigQuery query slots.

D.

Use the Google Cloud Billing API to see what account the warehouse is being billed to.

Buy Now
Questions 8

You work for a large fast food restaurant chain with over 400,000 employees. You store employee information in Google BigQuery in a Users table consisting of a FirstName field and a LastName field. A member of IT is building an application and asks you to modify the schema and data in BigQuery so the application can query a FullName field consisting of the value of the FirstName field concatenated with a space, followed by the value of the LastName field for each employee. How can you make that data available while minimizing cost?

Options:

A.

Create a view in BigQuery that concatenates the FirstName and LastName field values to produce the FullName.

B.

Add a new column called FullName to the Users table. Run an UPDATE statement that updates the FullName column for each user with the concatenation of the FirstName and LastName values.

C.

Create a Google Cloud Dataflow job that queries BigQuery for the entire Users table, concatenates the FirstName value and LastName value for each user, and loads the proper values for FirstName, LastName, and FullName into a new table in BigQuery.

D.

Use BigQuery to export the data for the table to a CSV file. Create a Google Cloud Dataproc job to process the CSV file and output a new CSV file containing the proper values for FirstName, LastName and FullName. Run a BigQuery load job to load the new CSV file into BigQuery.

Buy Now
Questions 9

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:

A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Buy Now
Questions 10

You are creating a model to predict housing prices. Due to budget constraints, you must run it on a single resource-constrained virtual machine. Which learning algorithm should you use?

Options:

A.

Linear regression

B.

Logistic classification

C.

Recurrent neural network

D.

Feedforward neural network

Buy Now
Questions 11

Your company is performing data preprocessing for a learning algorithm in Google Cloud Dataflow. Numerous data logs are being are being generated during this step, and the team wants to analyze them. Due to the dynamic nature of the campaign, the data is growing exponentially every hour.

The data scientists have written the following code to read the data for a new key features in the logs.

BigQueryIO.Read

.named(“ReadLogData”)

.from(“clouddataflow-readonly:samples.log_data”)

You want to improve the performance of this data read. What should you do?

Options:

A.

Specify the TableReference object in the code.

B.

Use .fromQuery operation to read specific fields from the table.

C.

Use of both the Google BigQuery TableSchema and TableFieldSchema classes.

D.

Call a transform that returns TableRow objects, where each element in the PCollexction represents a single row in the table.

Buy Now
Questions 12

You need to store and analyze social media postings in Google BigQuery at a rate of 10,000 messages per minute in near real-time. Initially, design the application to use streaming inserts for individual postings. Your application also performs data aggregations right after the streaming inserts. You discover that the queries after streaming inserts do not exhibit strong consistency, and reports from the queries might miss in-flight data. How can you adjust your application design?

Options:

A.

Re-write the application to load accumulated data every 2 minutes.

B.

Convert the streaming insert code to batch load for individual messages.

C.

Load the original message to Google Cloud SQL, and export the table every hour to BigQuery via streaming inserts.

D.

Estimate the average latency for data availability after streaming inserts, and always run queries after waiting twice as long.

Buy Now
Questions 13

You work for a manufacturing plant that batches application log files together into a single log file once a day at 2:00 AM. You have written a Google Cloud Dataflow job to process that log file. You need to make sure the log file in processed once per day as inexpensively as possible. What should you do?

Options:

A.

Change the processing job to use Google Cloud Dataproc instead.

B.

Manually start the Cloud Dataflow job each morning when you get into the office.

C.

Create a cron job with Google App Engine Cron Service to run the Cloud Dataflow job.

D.

Configure the Cloud Dataflow job as a streaming job so that it processes the log data immediately.

Buy Now
Questions 14

Your company is loading comma-separated values (CSV) files into Google BigQuery. The data is fully imported successfully; however, the imported data is not matching byte-to-byte to the source file. What is the most likely cause of this problem?

Options:

A.

The CSV data loaded in BigQuery is not flagged as CSV.

B.

The CSV data has invalid rows that were skipped on import.

C.

The CSV data loaded in BigQuery is not using BigQuery’s default encoding.

D.

The CSV data has not gone through an ETL phase before loading into BigQuery.

Buy Now
Questions 15

You have data pipelines running on BigQuery, Cloud Dataflow, and Cloud Dataproc. You need to perform health checks and monitor their behavior, and then notify the team managing the pipelines if they fail. You also need to be able to work across multiple projects. Your preference is to use managed products of features of the platform. What should you do?

Options:

A.

Export the information to Cloud Stackdriver, and set up an Alerting policy

B.

Run a Virtual Machine in Compute Engine with Airflow, and export the information to Stackdriver

C.

Export the logs to BigQuery, and set up App Engine to read that information and send emails if you find a failure in the logs

D.

Develop an App Engine application to consume logs using GCP API calls, and send emails if you find a failure in the logs

Buy Now
Questions 16

You are architecting a data transformation solution for BigQuery. Your developers are proficient with SOL and want to use the ELT development technique. In addition, your developers need an intuitive coding environment and the ability to manage SQL as code. You need to identify a solution for your developers to build these pipelines. What should you do?

Options:

A.

Use Cloud Composer to load data and run SQL pipelines by using the BigQuery job operators.

B.

Use Dataflow jobs to read data from Pub/Sub, transform the data, and load the data to BigQuery.

C.

Use Dataform to build, manage, and schedule SQL pipelines.

D.

Use Data Fusion to build and execute ETL pipelines

Buy Now
Questions 17

You have important legal hold documents in a Cloud Storage bucket. You need to ensure that these documents are not deleted or modified. What should you do?

Options:

A.

Set a retention policy. Lock the retention policy.

B.

Set a retention policy. Set the default storage class to Archive for long-term digital preservation.

C.

Enable the Object Versioning feature. Add a lifecycle rule.

D.

Enable the Object Versioning feature. Create a copy in a bucket in a different region.

Buy Now
Questions 18

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:

A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.

Buy Now
Questions 19

You need to create a SQL pipeline. The pipeline runs an aggregate SOL transformation on a BigQuery table every two hours and appends the result to another existing BigQuery table. You need to configure the pipeline to retry if errors occur. You want the pipeline to send an email notification after three consecutive failures. What should you do?

Options:

A.

Create a BigQuery scheduled query to run the SOL transformation with schedule options that repeats every two hours, and enable emailnotifications.

B.

Use the BigQueryUpsertTableOperator in Cloud Composer, set the retry parameter to three, and set the email_on_failure parameter totrue.

C.

Use the BigQuerylnsertJobOperator in Cloud Composer, set the retry parameter to three, and set the email_on_failure parameter totrue.

D.

Create a BigQuery scheduled query to run the SQL transformation with schedule options that repeats every two hours, and enablenotification to Pub/Sub topic. Use Pub/Sub and Cloud Functions to send an email after three tailed executions.

Buy Now
Questions 20

You are choosing a NoSQL database to handle telemetry data submitted from millions of Internet-of-Things (IoT) devices. The volume of data is growing at 100 TB per year, and each data entry has about 100 attributes. The data processing pipeline does not require atomicity, consistency, isolation, and durability (ACID). However, high availability and low latency are required.

You need to analyze the data by querying against individual fields. Which three databases meet your requirements? (Choose three.)

Options:

A.

Redis

B.

HBase

C.

MySQL

D.

MongoDB

E.

Cassandra

F.

HDFS with Hive

Buy Now
Questions 21

Your organization stores highly personal data in BigQuery and needs to comply with strict data privacy regulations. You need to ensure that sensitive data values are rendered unreadable whenever an employee leaves the organization. What should you do?

Options:

A.

Use dynamic data masking and revoke viewer permissions when employees leave the organization.

B.

Use column-level access controls with policy tags and revoke viewer permissions when employees leave the organization.

C.

Use AEAD functions and delete keys when employees leave the organization.

D.

Use customer-managed encryption keys (CMEK) and delete keys when employees leave the organization.

Buy Now
Questions 22

You want to store your team's shared tables in a single dataset to make data easily accessible to various analysts. You want to make this data readable but unmodifiable by analysts. At the same time, you want to provide the analysts with individual workspaces in the same project, where they can create and store tables for their own use, without the tables being accessible by other analysts. What should you do?

Options:

A.

Give analysts the BigQuery Data Viewer role at the project level Create one other dataset, and give the analysts the BigQuery Data Editor role on that dataset.

B.

Give analysts the BigQuery Data Viewer role at the project level Create a dataset for each analyst, and give each analyst the BigQuery Data Editor role at the project level.

C.

Give analysts the BigQuery Data Viewer role on the shared dataset. Create a dataset for each analyst, and give each analyst the BigQuery Data Editor role at the dataset level for their assigned dataset

D.

Give analysts the BigQuery Data Viewer role on the shared dataset Create one other dataset and give the analysts the BigQuery Data Editor role on that dataset.

Buy Now
Questions 23

You have a Standard Tier Memorystore for Redis instance deployed in a production environment. You need to simulate a Redis instance failover in the most accurate disaster recovery situation, and ensure that the failover has no impact on production data. What should you do?

Options:

A.

Create a Standard Tier Memorystore for Redis instance in a development environment. Initiate a manual failover by using the force-data-loss data protection mode.

B.

Initiate a manual failover by using the limited-data-loss data protection mode to the Memorystore for Redis instance in theproduction environment.

C.

Increase one replica to Redis instance in production environment. Initiate a manual failover by using the force-data-loss dataprotection mode.

D.

Create a Standard Tier Memorystore for Redis instance in the development environment. Initiate a manual failover by using the limited-data-loss data protection mode.

Buy Now
Questions 24

You have a variety of files in Cloud Storage that your data science team wants to use in their models Currently, users do not have a method to explore, cleanse, and validate the data in Cloud Storage. You are looking for a low code solution that can be used by your data science team to quickly cleanse and explore data within Cloud Storage. What should you do?

Options:

A.

Load the data into BigQuery and use SQL to transform the data as necessary Provide the data science team access to staging tables to explore the raw data.

B.

Provide the data science team access to Dataflow to create a pipeline to prepare and validate the raw data and load data into BigQuery for data exploration.

C.

Provide the data science team access to Dataprep to prepare, validate, and explore the data within Cloud Storage.

D.

Create an external table in BigQuery and use SQL to transform the data as necessary Provide the data science team access to the external tables to explore the raw data.

Buy Now
Questions 25

You monitor and optimize the BigQuery instance for your team. You notice that a particular daily report that uses a large JOIN operation is consistently slow. You want to examine the query's execution plan to identify potential performance bottlenecks within the JOIN as quickly as possible. What should you do?

Options:

A.

Review the BigQuery audit logs in Cloud Logging.

B.

Run a query on the INFORMATION_SCHEMA.JOBS_BY_PROJECT view filtering by the job_id and analyze total_bytes_processed.

C.

Leverage BigQuery's Query History view and analyze the execution graph.

D.

Use the bq query --dry_run command to review the estimated number of bytes read and review query syntax.

Buy Now
Questions 26

You have 100 GB of data stored in a BigQuery table. This data is outdated and will only be accessed one or two times a year for analytics with SQL. For backup purposes, you want to store this data to be immutable for 3 years. You want to minimize storage costs. What should you do?

Options:

A.

1 Create a BigQuery table clone.2. Query the clone when you need to perform analytics.

B.

1 Create a BigQuery table snapshot.2 Restore the snapshot when you need to perform analytics.

C.

1. Perform a BigQuery export to a Cloud Storage bucket with archive storage class.2 Enable versionmg on the bucket.3. Create a BigQuery external table on the exported files.

D.

1 Perform a BigQuery export to a Cloud Storage bucket with archive storage class.2 Set a locked retention policy on the bucket.3. Create a BigQuery external table on the exported files.

Buy Now
Questions 27

Your company has recently grown rapidly and now ingesting data at a significantly higher rate than it was previously. You manage the daily batch MapReduce analytics jobs in Apache Hadoop. However, the recent increase in data has meant the batch jobs are falling behind. You were asked to recommend ways the development team could increase the responsiveness of the analytics without increasing costs. What should you recommend they do?

Options:

A.

Rewrite the job in Pig.

B.

Rewrite the job in Apache Spark.

C.

Increase the size of the Hadoop cluster.

D.

Decrease the size of the Hadoop cluster but also rewrite the job in Hive.

Buy Now
Questions 28

You have a data pipeline that writes data to Cloud Bigtable using well-designed row keys. You want to monitor your pipeline to determine when to increase the size of you Cloud Bigtable cluster. Which two actions can you take to accomplish this? Choose 2 answers.

Options:

A.

Review Key Visualizer metrics. Increase the size of the Cloud Bigtable cluster when the Read pressure index is above 100.

B.

Review Key Visualizer metrics. Increase the size of the Cloud Bigtable cluster when the Write pressure index is above 100.

C.

Monitor the latency of write operations. Increase the size of the Cloud Bigtable cluster when there is a sustained increase in write latency.

D.

Monitor storage utilization. Increase the size of the Cloud Bigtable cluster when utilization increases above 70% of max capacity.

E.

Monitor latency of read operations. Increase the size of the Cloud Bigtable cluster of read operations take longer than 100 ms.

Buy Now
Questions 29

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

The user profile: What the user likes and doesn’t like to eat

The user account information: Name, address, preferred meal times

The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:

A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 30

You need to create a new transaction table in Cloud Spanner that stores product sales data. You are deciding what to use as a primary key. From a performance perspective, which strategy should you choose?

Options:

A.

The current epoch time

B.

A concatenation of the product name and the current epoch time

C.

A random universally unique identifier number (version 4 UUID)

D.

The original order identification number from the sales system, which is a monotonically increasing integer

Buy Now
Questions 31

You have Cloud Functions written in Node.js that pull messages from Cloud Pub/Sub and send the data to BigQuery. You observe that the message processing rate on the Pub/Sub topic is orders of magnitude higher than anticipated, but there is no error logged in Stackdriver Log Viewer. What are the two most likely causes of this problem? Choose 2 answers.

Options:

A.

Publisher throughput quota is too small.

B.

Total outstanding messages exceed the 10-MB maximum.

C.

Error handling in the subscriber code is not handling run-time errors properly.

D.

The subscriber code cannot keep up with the messages.

E.

The subscriber code does not acknowledge the messages that it pulls.

Buy Now
Questions 32

Your team is building a data lake platform on Google Cloud. As a part of the data foundation design, you are planning to store all the raw data in Cloud Storage You are expecting to ingest approximately 25 GB of data a day and your billing department is worried about the increasing cost of storing old data. The current business requirements are:

• The old data can be deleted anytime

• You plan to use the visualization layer for current and historical reporting

• The old data should be available instantly when accessed

• There should not be any charges for data retrieval.

What should you do to optimize for cost?

Options:

A.

Create the bucket with the Autoclass storage class feature.

B.

Create an Object Lifecycle Management policy to modify the storage class for data older than 30 days to nearline, 90 days to coldline. and 365 days to archive storage class. Delete old data as needed.

C.

Create an Object Lifecycle Management policy to modify the storage class for data older than 30 days to coldline, 90 days to nearline. and 365 days to archive storage class Delete old data as needed.

D.

Create an Object Lifecycle Management policy to modify the storage class for data older than 30 days to nearlme. 45 days to coldline. and 60 days to archive storage class Delete old data as needed.

Buy Now
Questions 33

You designed a data warehouse in BigQuery to analyze sales data. You want a self-serving, low-maintenance, and cost-effective solution to share the sales dataset to other business units in your organization. What should you do?

Options:

A.

Enable the other business units' projects to access the authorized views of the sales dataset.

B.

Use the BigQuery Data Transfer Service to create a schedule that copies the sales dataset to the other business units’ projects.

C.

Create an Analytics Hub private exchange, and publish the sales dataset.

D.

Create and share views with the users in the other business units.

Buy Now
Questions 34

Your Cloud Storage data lake has raw, processed, and historical data in different buckets. Data older than two years is rarely accessed, and all data must be retained for no longer than seven years. You are concerned about rising storage costs. How should you control costs for the historical data bucket?

Options:

A.

Write a script on a Compute Engine instance, triggered daily by Cloud Scheduler, to scan all objects and delete any older than seven years.

B.

Configure an Object Lifecycle Management rule to transition objects older than two years to the Archive storage class and eventually delete them after seven years.

C.

Enable the Autoclass feature on your Cloud Storage buckets and select Opt-in to object transitions to Coldline and Archive storage classes.

D.

Replicate the buckets to a different region with lower storage costs and an Object Lifecycle Management rule to delete objects after seven years.

Buy Now
Questions 35

You want to optimize your queries for cost and performance. How should you structure your data?

Options:

A.

Partition table data by create_date, location_id and device_version

B.

Partition table data by create_date cluster table data by location_Id and device_version

C.

Cluster table data by create_date location_id and device_version

D.

Cluster table data by create_date partition by locationed and device_version

Buy Now
Questions 36

Your company currently runs a large on-premises cluster using Spark Hive and Hadoop Distributed File System (HDFS) in a colocation facility. The duster is designed to support peak usage on the system, however, many jobs are batch n nature, and usage of the cluster fluctuates quite dramatically.

Your company is eager to move to the cloud to reduce the overhead associated with on-premises infrastructure and maintenance and to benefit from the cost savings. They are also hoping to modernize their existing infrastructure to use more servers offerings m order to take advantage of the cloud Because of the tuning of their contract renewal with the colocation facility they have only 2 months for their initial migration How should you recommend they approach thee upcoming migration strategy so they can maximize their cost savings in the cloud will still executing the migration in time?

Options:

A.

Migrate the workloads to Dataproc plus HOPS, modernize later

B.

Migrate the workloads to Dataproc plus Cloud Storage modernize later

C.

Migrate the Spark workload to Dataproc plus HDFS, and modernize the Hive workload for BigQuery

D.

Modernize the Spark workload for Dataflow and the Hive workload for BigQuery

Buy Now
Questions 37

Your globally distributed auction application allows users to bid on items. Occasionally, users place identical bids at nearly identical times, and different application servers process those bids. Each bid event contains the item, amount, user, and timestamp. You want to collate those bid events into a single location in real time to determine which user bid first. What should you do?

Options:

A.

Create a file on a shared file and have the application servers write all bid events to that file. Process the file with Apache Hadoop to identify which user bid first.

B.

Have each application server write the bid events to Cloud Pub/Sub as they occur. Push the events from Cloud Pub/Sub to a custom endpoint that writes the bid event information into Cloud SQL.

C.

Set up a MySQL database for each application server to write bid events into. Periodically query each of those distributed MySQL databases and update a master MySQL database with bid event information.

D.

Have each application server write the bid events to Google Cloud Pub/Sub as they occur. Use a pullsubscription to pull the bid events using Google Cloud Dataflow. Give the bid for each item to the user inthe bid event that is processed first.

Buy Now
Questions 38

You store historic data in Cloud Storage. You need to perform analytics on the historic data. You want to use a solution to detect invalid data entries and perform data transformations that will not require programming or knowledge of SQL.

What should you do?

Options:

A.

Use Cloud Dataflow with Beam to detect errors and perform transformations.

B.

Use Cloud Dataprep with recipes to detect errors and perform transformations.

C.

Use Cloud Dataproc with a Hadoop job to detect errors and perform transformations.

D.

Use federated tables in BigQuery with queries to detect errors and perform transformations.

Buy Now
Questions 39

Which of the following are feature engineering techniques? (Select 2 answers)

Options:

A.

Hidden feature layers

B.

Feature prioritization

C.

Crossed feature columns

D.

Bucketization of a continuous feature

Buy Now
Questions 40

Which Cloud Dataflow / Beam feature should you use to aggregate data in an unbounded data source every hour based on the time when the data entered the pipeline?

Options:

A.

An hourly watermark

B.

An event time trigger

C.

The with Allowed Lateness method

D.

A processing time trigger

Buy Now
Questions 41

What is the general recommendation when designing your row keys for a Cloud Bigtable schema?

Options:

A.

Include multiple time series values within the row key

B.

Keep the row keep as an 8 bit integer

C.

Keep your row key reasonably short

D.

Keep your row key as long as the field permits

Buy Now
Questions 42

What are two of the benefits of using denormalized data structures in BigQuery?

Options:

A.

Reduces the amount of data processed, reduces the amount of storage required

B.

Increases query speed, makes queries simpler

C.

Reduces the amount of storage required, increases query speed

D.

Reduces the amount of data processed, increases query speed

Buy Now
Questions 43

Flowlogistic’s CEO wants to gain rapid insight into their customer base so his sales team can be better informed in the field. This team is not very technical, so they’ve purchased a visualization tool to simplify the creation of BigQuery reports. However, they’ve been overwhelmed by all thedata in the table, and are spending a lot of money on queries trying to find the data they need. You want to solve their problem in the most cost-effective way. What should you do?

Options:

A.

Export the data into a Google Sheet for virtualization.

B.

Create an additional table with only the necessary columns.

C.

Create a view on the table to present to the virtualization tool.

D.

Create identity and access management (IAM) roles on the appropriate columns, so only they appear in a query.

Buy Now
Questions 44

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:

A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Buy Now
Questions 45

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:

A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Buy Now
Questions 46

MJTelco’s Google Cloud Dataflow pipeline is now ready to start receiving data from the 50,000 installations. You want to allow Cloud Dataflow to scale its compute power up as required. Which Cloud Dataflow pipeline configuration setting should you update?

Options:

A.

The zone

B.

The number of workers

C.

The disk size per worker

D.

The maximum number of workers

Buy Now
Questions 47

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:

A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Buy Now
Questions 48

Given the record streams MJTelco is interested in ingesting per day, they are concerned about the cost of Google BigQuery increasing. MJTelco asks you to provide a design solution. They require a single large data table called tracking_table. Additionally, they want to minimize the cost of daily queries while performing fine-grained analysis of each day’s events. They also want to use streaming ingestion. What should you do?

Options:

A.

Create a table called tracking_table and include a DATE column.

B.

Create a partitioned table called tracking_table and include a TIMESTAMP column.

C.

Create sharded tables for each day following the pattern tracking_table_YYYYMMDD.

D.

Create a table called tracking_table with a TIMESTAMP column to represent the day.

Buy Now
Questions 49

You need to compose visualizations for operations teams with the following requirements:

Which approach meets the requirements?

Options:

A.

Load the data into Google Sheets, use formulas to calculate a metric, and use filters/sorting to show only suboptimal links in a table.

B.

Load the data into Google BigQuery tables, write Google Apps Script that queries the data, calculates the metric, and shows only suboptimal rows in a table in Google Sheets.

C.

Load the data into Google Cloud Datastore tables, write a Google App Engine Application that queries all rows, applies a function to derive the metric, and then renders results in a table using the Google charts and visualization API.

D.

Load the data into Google BigQuery tables, write a Google Data Studio 360 report that connects to your data, calculates a metric, and then uses a filter expression to show only suboptimal rows in a table.

Buy Now
Questions 50

MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?

Options:

A.

Rowkey: date#device_idColumn data: data_point

B.

Rowkey: dateColumn data: device_id, data_point

C.

Rowkey: device_idColumn data: date, data_point

D.

Rowkey: data_pointColumn data: device_id, date

E.

Rowkey: date#data_pointColumn data: device_id

Buy Now
Questions 51

Your company’s on-premises Apache Hadoop servers are approaching end-of-life, and IT has decided to migrate the cluster to Google Cloud Dataproc. A like-for-like migration of the cluster would require 50 TB of Google Persistent Disk per node. The CIO is concerned about the cost of using that much block storage. You want to minimize the storage cost of the migration. What should you do?

Options:

A.

Put the data into Google Cloud Storage.

B.

Use preemptible virtual machines (VMs) for the Cloud Dataproc cluster.

C.

Tune the Cloud Dataproc cluster so that there is just enough disk for all data.

D.

Migrate some of the cold data into Google Cloud Storage, and keep only the hot data in Persistent Disk.

Buy Now
Questions 52

You want to process payment transactions in a point-of-sale application that will run on Google Cloud Platform. Your user base could grow exponentially, but you do not want to manage infrastructure scaling.

Which Google database service should you use?

Options:

A.

Cloud SQL

B.

BigQuery

C.

Cloud Bigtable

D.

Cloud Datastore

Buy Now
Questions 53

MJTelco is building a custom interface to share data. They have these requirements:

They need to do aggregations over their petabyte-scale datasets.

They need to scan specific time range rows with a very fast response time (milliseconds).

Which combination of Google Cloud Platform products should you recommend?

Options:

A.

Cloud Datastore and Cloud Bigtable

B.

Cloud Bigtable and Cloud SQL

C.

BigQuery and Cloud Bigtable

D.

BigQuery and Cloud Storage

Buy Now
Questions 54

You need to compose visualization for operations teams with the following requirements:

Telemetry must include data from all 50,000 installations for the most recent 6 weeks (sampling once every minute)

The report must not be more than 3 hours delayed from live data.

The actionable report should only show suboptimal links.

Most suboptimal links should be sorted to the top.

Suboptimal links can be grouped and filtered by regional geography.

User response time to load the report must be <5 seconds.

You create a data source to store the last 6 weeks of data, and create visualizations that allow viewers to see multiple date ranges, distinct geographic regions, and unique installation types. You always show the latest data without any changes to your visualizations. You want to avoid creating and updating new visualizations each month. What should you do?

Options:

A.

Look through the current data and compose a series of charts and tables, one for each possiblecombination of criteria.

B.

Look through the current data and compose a small set of generalized charts and tables bound to criteria filters that allow value selection.

C.

Export the data to a spreadsheet, compose a series of charts and tables, one for each possiblecombination of criteria, and spread them across multiple tabs.

D.

Load the data into relational database tables, write a Google App Engine application that queries all rows, summarizes the data across each criteria, and then renders results using the Google Charts and visualization API.

Buy Now
Questions 55

You create a new report for your large team in Google Data Studio 360. The report uses Google BigQuery as its data source. It is company policy to ensure employees can view only the data associated with their region, so you create and populate a table for each region. You need to enforce the regional access policy to the data.

Which two actions should you take? (Choose two.)

Options:

A.

Ensure all the tables are included in global dataset.

B.

Ensure each table is included in a dataset for a region.

C.

Adjust the settings for each table to allow a related region-based security group view access.

D.

Adjust the settings for each view to allow a related region-based security group view access.

E.

Adjust the settings for each dataset to allow a related region-based security group view access.

Buy Now
Questions 56

Why do you need to split a machine learning dataset into training data and test data?

Options:

A.

So you can try two different sets of features

B.

To make sure your model is generalized for more than just the training data

C.

To allow you to create unit tests in your code

D.

So you can use one dataset for a wide model and one for a deep model

Buy Now
Questions 57

Google Cloud Bigtable indexes a single value in each row. This value is called the _______.

Options:

A.

primary key

B.

unique key

C.

row key

D.

master key

Buy Now
Questions 58

You are planning to use Google's Dataflow SDK to analyze customer data such as displayed below. Your project requirement is to extract only the customer name from the data source and then write to an output PCollection.

Tom,555 X street

Tim,553 Y street

Sam, 111 Z street

Which operation is best suited for the above data processing requirement?

Options:

A.

ParDo

B.

Sink API

C.

Source API

D.

Data extraction

Buy Now
Questions 59

How would you query specific partitions in a BigQuery table?

Options:

A.

Use the DAY column in the WHERE clause

B.

Use the EXTRACT(DAY) clause

C.

Use the __PARTITIONTIME pseudo-column in the WHERE clause

D.

Use DATE BETWEEN in the WHERE clause

Buy Now
Questions 60

Which of these rules apply when you add preemptible workers to a Dataproc cluster (select 2 answers)?

Options:

A.

Preemptible workers cannot use persistent disk.

B.

Preemptible workers cannot store data.

C.

If a preemptible worker is reclaimed, then a replacement worker must be added manually.

D.

A Dataproc cluster cannot have only preemptible workers.

Buy Now
Questions 61

Cloud Dataproc charges you only for what you really use with _____ billing.

Options:

A.

month-by-month

B.

minute-by-minute

C.

week-by-week

D.

hour-by-hour

Buy Now
Questions 62

Which action can a Cloud Dataproc Viewer perform?

Options:

A.

Submit a job.

B.

Create a cluster.

C.

Delete a cluster.

D.

List the jobs.

Buy Now
Questions 63

Which of these operations can you perform from the BigQuery Web UI?

Options:

A.

Upload a file in SQL format.

B.

Load data with nested and repeated fields.

C.

Upload a 20 MB file.

D.

Upload multiple files using a wildcard.

Buy Now
Questions 64

Cloud Bigtable is Google's ______ Big Data database service.

Options:

A.

Relational

B.

mySQL

C.

NoSQL

D.

SQL Server

Buy Now
Questions 65

What Dataflow concept determines when a Window's contents should be output based on certain criteria being met?

Options:

A.

Sessions

B.

OutputCriteria

C.

Windows

D.

Triggers

Buy Now
Questions 66

Which of the following are examples of hyperparameters? (Select 2 answers.)

Options:

A.

Number of hidden layers

B.

Number of nodes in each hidden layer

C.

Biases

D.

Weights

Buy Now
Questions 67

You want to use a BigQuery table as a data sink. In which writing mode(s) can you use BigQuery as a sink?

Options:

A.

Both batch and streaming

B.

BigQuery cannot be used as a sink

C.

Only batch

D.

Only streaming

Buy Now
Questions 68

Which methods can be used to reduce the number of rows processed by BigQuery?

Options:

A.

Splitting tables into multiple tables; putting data in partitions

B.

Splitting tables into multiple tables; putting data in partitions; using the LIMIT clause

C.

Putting data in partitions; using the LIMIT clause

D.

Splitting tables into multiple tables; using the LIMIT clause

Buy Now
Questions 69

Which of the following statements about Legacy SQL and Standard SQL is not true?

Options:

A.

Standard SQL is the preferred query language for BigQuery.

B.

If you write a query in Legacy SQL, it might generate an error if you try to run it with Standard SQL.

C.

One difference between the two query languages is how you specify fully-qualified table names (i.e. table names that include their associated project name).

D.

You need to set a query language for each dataset and the default is Standard SQL.

Buy Now
Questions 70

Which of the following is NOT one of the three main types of triggers that Dataflow supports?

Options:

A.

Trigger based on element size in bytes

B.

Trigger that is a combination of other triggers

C.

Trigger based on element count

D.

Trigger based on time

Buy Now
Questions 71

Which of the following is NOT a valid use case to select HDD (hard disk drives) as the storage for Google Cloud Bigtable?

Options:

A.

You expect to store at least 10 TB of data.

B.

You will mostly run batch workloads with scans and writes, rather than frequently executing random reads of a small number of rows.

C.

You need to integrate with Google BigQuery.

D.

You will not use the data to back a user-facing or latency-sensitive application.

Buy Now
Exam Name: Google Professional Data Engineer Exam
Last Update: Feb 9, 2026
Questions: 400
Professional-Data-Engineer pdf

Professional-Data-Engineer PDF

$29.75  $84.99
Professional-Data-Engineer Engine

Professional-Data-Engineer Testing Engine

$35  $99.99
Professional-Data-Engineer PDF + Engine

Professional-Data-Engineer PDF + Testing Engine

$47.25  $134.99